搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿太阳能电池中电子传输材料的研究进展

丁雄傑 倪露 马圣博 马英壮 肖立新 陈志坚

引用本文:
Citation:

钙钛矿太阳能电池中电子传输材料的研究进展

丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚

progress in electron-transport materials in application of perovskite solar cells

Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian
PDF
导出引用
  • 有机-无机杂化的卤素钙钛矿材料在2009年首次应用在光伏器件中, 而后有关此类型太阳能电池的报道数量呈井喷式增长. 至2014年5月钙钛矿电池光电转化效率已接近20%, 已超过有机及染料敏化太阳能电池的效率, 且有望达到单晶硅太阳能的水平, 成为光伏发电领域中的希望之星. 在钙钛矿电池中, 电子传输材料与吸收层的电子选择性接触对提高光电转化效率起到重要作用, 尤其在正置结构器件中, 电子传输层的介观结构直接影响钙钛矿的生长情况. 同时, 电子传输层的化学性质及其界面也会对电池的稳定性和寿命产生影响. 本文总结了电子传输材料在该类电池中的研究现状和热点, 并按材料的化学组分不同, 将电子传输材料分为三类: 金属氧化物、有机小分子和复合材料, 详细地介绍了电子传输材料在钙钛矿太阳能电池中的作用和近来的最新进展.
    Ever since the first organic-inorganic hybrid halogen perovskite solar cell was first used as a photo-voltaic material in 2009, reports on this type of solar cell have grown exponentially over the years. Up till May 2014, the photo-energy conversion efficiency of the perovskite solar cell have already achieved an efficiency approaching 20%. Surpassing the efficiency achieved by organic and dye synthesized solar cell, the perovskite solar cell is in good hope of reaching the efficiency compatible with that of mono-crystalline silicon solar cell, thus it is going to be the star in photo-voltaic industry. In a perovskite solar cell, the film-formation and electron-mobility in the electron transfer layer can dramatically affect its efficiency and life-span. Especially in the up-right structured device, the mesoscopic structures of the electron-transfer layer will directly influence the growth of the perovskite layer. The present researches of electron transport materials mainly focus on three aspects: (1) How to improve the instability in mesoporous TiO2-mesosuperstructured solar cells, that arises from light-induced desorption of surface-adsorbed oxygen. (2) How to obtain TiO2 or other electron transport materials at low temperature (sub 150 ℃) in order to be applicatable in flexible devices. (3) How to substitute the mesoporous TiO2 or compact TiO2 transport layer by organic or composite materials. This article devides the materials that are used to make the electron-transfer layer into three distinct groups according to their chemical composition: i.e. metal oxides, organic small molecules, and composite materials, and introduces about the role they play and the recent development of them in constructing the perovskite solar cell.
    • 基金项目: 国家自然科学基金(批准号: 61177020, 11121091)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61177020, 11121091).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [3]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graätzel M, Park N G 2012 Sci. Rep. 2 591

    [4]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Graätzel M 2013 Nature 499 316

    [5]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [6]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [7]

    Service R F 2014 Science 344 458

    [8]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [9]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004

    [10]

    Ma Y Z, Wang S F, Zheng L L, Lu Z L, Zhang D F, Bian Z Q, Huang C H, Xiao L X 2014 Chin. J. Chem. 32 957

    [11]

    Grinberg I, West D V, Torres M, Gou1 G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509

    [12]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K 2003 Solid State Commun. 127 619

    [13]

    Wu S K, Wang P F 2010 Organic Electronics (Beijing: Chemical industry press) pp32-36 (in Chinese) [吴世康, 汪鹏飞 2010 有机电子学概论 (北京: 化学工业出版社)第32–35页]

    [14]

    Kim H S, Im S H, Park N G 2014 J. Phys. Chem. C 118 5615

    [15]

    Loi M A, Hummelen J C 2013 Nat. Mater. 12 1087

    [16]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [17]

    Wang Q, Shao Y C, Dong Q F, Xiao Z G, Yuan Y B, Huang J S 2014 Energy Environ. Sci. 7 2359

    [18]

    Xiao Z G, Bi C, Shao Y C, Dong Q F, Wang Q, Yuan Y B, Wang C G, Gao Y L, Huang JS 2014 Energy Environ. Sci. 7 2619

    [19]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang JS 2014 Adv. Mater. 26 6503

    [20]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T-W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [21]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok II S 2014 Nat. Mater. 13 897

    [22]

    Hou Q Y, Wu Y, Zhao C W 2013 Acta Phys. Sin. 62 237101 (in Chinese) [侯清玉, 乌云, 赵春旺 2013 物理学报 62 237101]

    [23]

    Gill W D 1972 J. Appl. Phys. 43 5033

    [24]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [25]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [26]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [27]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Graätzel M 2012 J. Am. Chem. Soc. 134 17396

    [28]

    Abu Laban W, Etgar L 2013 Energy Environ. Sci. 6 3249

    [29]

    Aharon S, Gamliel S, El Cohen B, Etgar L 2014 PCCP 16 10512

    [30]

    Aharon S, El Cohen B, Etgar L 2014 J. Phys. Chem. C 118 17160

    [31]

    Yella A, Heiniger L P, Gao P, Nazeeruddin M K, Graätzel M 2014 Nano Lett. 14 2591

    [32]

    Schwanitz K, Weiler U, Hunger R, Mayer T, Jaegermann W 2007 J. Phys. Chem. C 111 849

    [33]

    Bisquert J, Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Barea E M, Palomares E 2008 Inorg. Chim. Acta 361 684

    [34]

    Henderson M A, Epling W S, Perkins C L, Peden C H F, Diebold U 1999 J. Phys. Chem. B 103 5328

    [35]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat.Commun. 4 2885

    [36]

    Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Graätzel M 1998 Nature 395 583

    [37]

    Apgar B A, Martin L W 2014 Cryst. Growth Des. 14 1981

    [38]

    Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi E 2000 J. Mol. Catal. A-Chem. 161 205

    [39]

    Eperon G E, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 591

    [40]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [41]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142

    [42]

    Conings B, Baeten L, Jacobs T, Dera R, D'Haen J, Manca J, Boyen H G 2014 APL Mater. 2 081505

    [43]

    Pournami P V, Marykutty T, George K C 2012 J. Appl. Phys. 112 104308

    [44]

    Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [45]

    Small C E, Chen S, Subbiah J, Amb C M, Tsang S W, Lai T H, Reynolds J R, So F 2012 Nat. Photonics 6 115

    [46]

    Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Graätzel M, Park N G 2013 Nano Lett. 13 2412

    [47]

    Dharani S, Mulmudi H K, Yantara N, Trang P T T, Park N G, Graetzel M, Mhaisalkar S, Mathews N, Boix P P 2014 Nanoscale 6 1675

    [48]

    Tang H, Prasad K, Sanjines R, Schmid P E, Levy F 1994 J. Appl. Phys. 75 2042

    [49]

    Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z 2009 Adv. Mater. 21 4087

    [50]

    Ariyanto N P, Abdullah H, Syarif J, Yuliarto B, Shaari S 2010 Funct. Mater. Lett. 3 303

    [51]

    Keis K, Magnusson E, Lindström H, Lindquist S, Hagfeldt A A 2002 Sol. Energy Mater. Sol. Cells 73 51

    [52]

    Goncalves A S, Goes M S, Fabregat-Santiago F, Moehl T, Davolos M R, Bisquert J, Yanagidad S, Nogueirac A F, Bueno P R 2011 Electrochim. Acta 56 6503

    [53]

    Son D Y, Im J H, Kim H S, Park N G 2014 J. Phy. Chem. C 118 16567

    [54]

    Kumar M H, Yantara N, Dharani S, Graätzel M, Mhaisalkar S, Boix P P, Mathews N 2013 Chem. Commun. 49 11089

    [55]

    Liu D, Kelly T L 2014 Nat. Photonics 8 133

    [56]

    Bi D Q, Boschloo G, Schwarzmller S, Yang L, Johanssona E, Hagfeldt A 2013 Nanoscale 5 11686

    [57]

    Zheng H D, Tachibana Y, Kalantar-zadeh K 2010 Langmuir 26 19148

    [58]

    Mahmood K, Swain BS, Kirmania A R, Amassian A 2014 J. Mater. Chem. A DOI: 10.1039/C4TA04883K

    [59]

    Sakai N, Miyasaka T, Murakami T N 2013 J. Phys. Chem. C 117 10949

    [60]

    Oh L S, Kim D H, Lee J A, Shin S S, Lee J W, Park I J, Ko M J, Park N G, Pyo S G, Hong K S, Kim J Y 2014 J. Phys. Chem. C 118 22991

    [61]

    Yong S M, Nikolay T, Ahn B T, Kim D K 2013 J. Alloys Compd. 547 113

    [62]

    Haddon R C, Perel A S, Morris R C, Palstra T T M, Hebard A F, Fleming R M 1995 Appl. Phys. Lett. 67 121

    [63]

    Kobayashi S, Takenobu T, Mori S, Fujiwara A, Iwasa Y 2003 Appl. Phys. Lett. 82 4581

    [64]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [65]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J J, Jen A K Y 2014 Adv. Mater. 26 3748

    [66]

    Wang Q, Shao Y C, Dong Q F, Xiao Z G, Yuan Y B, Huang J S 2014 Energy Environ. Sci. 7 2359

    [67]

    Gao Z, Qu B, Xiao L X, Chen Z J, Zhang L P, Gong Q H 2014 Appl. Phys. Lett. 104 103301

    [68]

    Qu B, Gao Z, Yang H S, Xiao L X, Chen Z J, Gong Q H 2014 Appl. Phys. Lett. 104 043305

    [69]

    2006 Nano Lett 6 755

    [70]

    Savenije T J, Huijser A, Vermeulen M J W, Katoh R 2008 Chem. Phys. Lett. 461 93

    [71]

    Fravventura M C, Deligiannis D, Schins J M, Siebbeles L D A, Savenije T J 2013 J. Phys. Chem. C 117 8032.

    [72]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Graätzel M, Han H W 2014 Science 345 295

    [73]

    Ogomi Y, Kukihara K, Qing S, Toyoda T, Yoshino K, Pandey S, Momose H, Hayase S 2014 ChemPhysChem 15 1062

    [74]

    Abrusci A, Stranks S D, Docampo P, Yip H L, Jen A K-Y, Snaith H J 2013 Nano Lett. 1 3

    [75]

    Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995

    [76]

    Wang J T-W, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J 2014 Nano Lett. 14 724

    [77]

    Miyauchi M 2007 J. Phys. Chem. C 111 12440

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [3]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graätzel M, Park N G 2012 Sci. Rep. 2 591

    [4]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Graätzel M 2013 Nature 499 316

    [5]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [6]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [7]

    Service R F 2014 Science 344 458

    [8]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [9]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004

    [10]

    Ma Y Z, Wang S F, Zheng L L, Lu Z L, Zhang D F, Bian Z Q, Huang C H, Xiao L X 2014 Chin. J. Chem. 32 957

    [11]

    Grinberg I, West D V, Torres M, Gou1 G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509

    [12]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K 2003 Solid State Commun. 127 619

    [13]

    Wu S K, Wang P F 2010 Organic Electronics (Beijing: Chemical industry press) pp32-36 (in Chinese) [吴世康, 汪鹏飞 2010 有机电子学概论 (北京: 化学工业出版社)第32–35页]

    [14]

    Kim H S, Im S H, Park N G 2014 J. Phys. Chem. C 118 5615

    [15]

    Loi M A, Hummelen J C 2013 Nat. Mater. 12 1087

    [16]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [17]

    Wang Q, Shao Y C, Dong Q F, Xiao Z G, Yuan Y B, Huang J S 2014 Energy Environ. Sci. 7 2359

    [18]

    Xiao Z G, Bi C, Shao Y C, Dong Q F, Wang Q, Yuan Y B, Wang C G, Gao Y L, Huang JS 2014 Energy Environ. Sci. 7 2619

    [19]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang JS 2014 Adv. Mater. 26 6503

    [20]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T-W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [21]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok II S 2014 Nat. Mater. 13 897

    [22]

    Hou Q Y, Wu Y, Zhao C W 2013 Acta Phys. Sin. 62 237101 (in Chinese) [侯清玉, 乌云, 赵春旺 2013 物理学报 62 237101]

    [23]

    Gill W D 1972 J. Appl. Phys. 43 5033

    [24]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [25]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [26]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [27]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Graätzel M 2012 J. Am. Chem. Soc. 134 17396

    [28]

    Abu Laban W, Etgar L 2013 Energy Environ. Sci. 6 3249

    [29]

    Aharon S, Gamliel S, El Cohen B, Etgar L 2014 PCCP 16 10512

    [30]

    Aharon S, El Cohen B, Etgar L 2014 J. Phys. Chem. C 118 17160

    [31]

    Yella A, Heiniger L P, Gao P, Nazeeruddin M K, Graätzel M 2014 Nano Lett. 14 2591

    [32]

    Schwanitz K, Weiler U, Hunger R, Mayer T, Jaegermann W 2007 J. Phys. Chem. C 111 849

    [33]

    Bisquert J, Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Barea E M, Palomares E 2008 Inorg. Chim. Acta 361 684

    [34]

    Henderson M A, Epling W S, Perkins C L, Peden C H F, Diebold U 1999 J. Phys. Chem. B 103 5328

    [35]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat.Commun. 4 2885

    [36]

    Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Graätzel M 1998 Nature 395 583

    [37]

    Apgar B A, Martin L W 2014 Cryst. Growth Des. 14 1981

    [38]

    Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi E 2000 J. Mol. Catal. A-Chem. 161 205

    [39]

    Eperon G E, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 591

    [40]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [41]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142

    [42]

    Conings B, Baeten L, Jacobs T, Dera R, D'Haen J, Manca J, Boyen H G 2014 APL Mater. 2 081505

    [43]

    Pournami P V, Marykutty T, George K C 2012 J. Appl. Phys. 112 104308

    [44]

    Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [45]

    Small C E, Chen S, Subbiah J, Amb C M, Tsang S W, Lai T H, Reynolds J R, So F 2012 Nat. Photonics 6 115

    [46]

    Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Graätzel M, Park N G 2013 Nano Lett. 13 2412

    [47]

    Dharani S, Mulmudi H K, Yantara N, Trang P T T, Park N G, Graetzel M, Mhaisalkar S, Mathews N, Boix P P 2014 Nanoscale 6 1675

    [48]

    Tang H, Prasad K, Sanjines R, Schmid P E, Levy F 1994 J. Appl. Phys. 75 2042

    [49]

    Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z 2009 Adv. Mater. 21 4087

    [50]

    Ariyanto N P, Abdullah H, Syarif J, Yuliarto B, Shaari S 2010 Funct. Mater. Lett. 3 303

    [51]

    Keis K, Magnusson E, Lindström H, Lindquist S, Hagfeldt A A 2002 Sol. Energy Mater. Sol. Cells 73 51

    [52]

    Goncalves A S, Goes M S, Fabregat-Santiago F, Moehl T, Davolos M R, Bisquert J, Yanagidad S, Nogueirac A F, Bueno P R 2011 Electrochim. Acta 56 6503

    [53]

    Son D Y, Im J H, Kim H S, Park N G 2014 J. Phy. Chem. C 118 16567

    [54]

    Kumar M H, Yantara N, Dharani S, Graätzel M, Mhaisalkar S, Boix P P, Mathews N 2013 Chem. Commun. 49 11089

    [55]

    Liu D, Kelly T L 2014 Nat. Photonics 8 133

    [56]

    Bi D Q, Boschloo G, Schwarzmller S, Yang L, Johanssona E, Hagfeldt A 2013 Nanoscale 5 11686

    [57]

    Zheng H D, Tachibana Y, Kalantar-zadeh K 2010 Langmuir 26 19148

    [58]

    Mahmood K, Swain BS, Kirmania A R, Amassian A 2014 J. Mater. Chem. A DOI: 10.1039/C4TA04883K

    [59]

    Sakai N, Miyasaka T, Murakami T N 2013 J. Phys. Chem. C 117 10949

    [60]

    Oh L S, Kim D H, Lee J A, Shin S S, Lee J W, Park I J, Ko M J, Park N G, Pyo S G, Hong K S, Kim J Y 2014 J. Phys. Chem. C 118 22991

    [61]

    Yong S M, Nikolay T, Ahn B T, Kim D K 2013 J. Alloys Compd. 547 113

    [62]

    Haddon R C, Perel A S, Morris R C, Palstra T T M, Hebard A F, Fleming R M 1995 Appl. Phys. Lett. 67 121

    [63]

    Kobayashi S, Takenobu T, Mori S, Fujiwara A, Iwasa Y 2003 Appl. Phys. Lett. 82 4581

    [64]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [65]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J J, Jen A K Y 2014 Adv. Mater. 26 3748

    [66]

    Wang Q, Shao Y C, Dong Q F, Xiao Z G, Yuan Y B, Huang J S 2014 Energy Environ. Sci. 7 2359

    [67]

    Gao Z, Qu B, Xiao L X, Chen Z J, Zhang L P, Gong Q H 2014 Appl. Phys. Lett. 104 103301

    [68]

    Qu B, Gao Z, Yang H S, Xiao L X, Chen Z J, Gong Q H 2014 Appl. Phys. Lett. 104 043305

    [69]

    2006 Nano Lett 6 755

    [70]

    Savenije T J, Huijser A, Vermeulen M J W, Katoh R 2008 Chem. Phys. Lett. 461 93

    [71]

    Fravventura M C, Deligiannis D, Schins J M, Siebbeles L D A, Savenije T J 2013 J. Phys. Chem. C 117 8032.

    [72]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Graätzel M, Han H W 2014 Science 345 295

    [73]

    Ogomi Y, Kukihara K, Qing S, Toyoda T, Yoshino K, Pandey S, Momose H, Hayase S 2014 ChemPhysChem 15 1062

    [74]

    Abrusci A, Stranks S D, Docampo P, Yip H L, Jen A K-Y, Snaith H J 2013 Nano Lett. 1 3

    [75]

    Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995

    [76]

    Wang J T-W, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J 2014 Nano Lett. 14 724

    [77]

    Miyauchi M 2007 J. Phys. Chem. C 111 12440

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [4] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [5] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [6] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [7] 孙盟杰, 何志群, 郑毅帆, 邵宇川. EDTA/SnO2双层复合电子传输层在钙钛矿电池中的应用. 物理学报, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [8] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [9] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [11] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [12] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [13] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [14] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [16] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [18] 王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊. 溶剂对钙钛矿薄膜形貌和结晶性的影响研究. 物理学报, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
    [19] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [20] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
计量
  • 文章访问数:  18670
  • PDF下载量:  4915
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-21
  • 修回日期:  2014-11-18
  • 刊出日期:  2015-02-05

/

返回文章
返回