搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型空穴传输材料在钙钛矿太阳能电池中的研究进展

宋志浩 王世荣 肖殷 李祥高

引用本文:
Citation:

新型空穴传输材料在钙钛矿太阳能电池中的研究进展

宋志浩, 王世荣, 肖殷, 李祥高

Progress of research on new hole transporting materials used in perovskite solar cells

Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao
PDF
导出引用
  • 钙钛矿太阳能电池是一种全新的全固态薄膜电池. 报道的能量转换效率已提高到19.3%, 成为可再生能源领域的热点研究方向. 空穴传输材料是构成高效钙钛矿太阳能电池的重要组分之一. 本文介绍了钙钛矿太阳能电池的基本结构, 对空穴传输材料的分子结构、能级水平和迁移率等对电池性能的影响进行了详细的总结和评述.
    Perovskite solar cells with a solid-state thin film structure have attracted great attention in recent years due to their simple structure, low production cost and superb photovoltaic performance. Because of the boost in power conversion efficiency (PCE) in short intervals from 3.8% to 19.3% at present, this hybrid cells have been considered as the next generation photovoltaic devices. It is expected that the efficiencies of individual devices could ultimately achieve 25%, which is comparable to the single-crystal silicon solar cell.In this article, the perovskite absorber, its basic device structure, and operating principles are briefly introduced. Since most of the high efficiency perovskite solar cells employ hole transporting materials (HTM), they could benefit the hole transport and improve the metal-semiconductor interface in the cells. This perspective gives analyses of some effective hole transporting materials for perovskite solar cell application. The hole transporting materials used in perovskite solar cell are classified into six categories according to their structures, including triphenylamine-based small molecule HTM, small molecule HTM containing N atom, sulfur-based small molecule HTM, sulfur-based polymer HTM, polymer HTM containing N atom and inorganic HTM. Emphasis is placed on the interplay of molecular structures, energy levels, and charge carrier mobility as well as device parameters. A critial look at various approaches applied to achieve desired materials and device performance is provided to assist in the identification of new directions and further advances.
    • 基金项目: 国家高技术研究发展计划(批准号: 2012AA030307)和天津市科技支撑计划重点资助项目(批准号: 13ZCZDGX00900)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA030307), and the Key Projects in the Science & Technology Pillar Program of Tianjin, China (Grant No. 13ZCZDGX00900).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [3]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [4]

    Singh S P, Nagarjuna P 2014 Dalton Trans. 43 5247

    [5]

    Cai B, Xing Y D, Yang Z, Zhang W H, Qiu J S 2013 Energy Environ. Sci. 6 1480

    [6]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [7]

    Park N G 2013 J. Phys. Chem. Lett. 4 2423

    [8]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [9]

    Yang Z, Zhang W H 2014 Chin. J. Catal. 35 983

    [10]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [11]

    Shi J J, Dong J, Lv S T, Xu Y Z, Zhu L F, Xiao J Y, Xu X, Wu H J, Li D M, Luo Y H, Meng Q B 2014 Appl. Phys. Lett. 104 063901

    [12]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [13]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [14]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [15]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [16]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [17]

    Sun S Y, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G C, Sum T C, Lam Y M 2014 Energy Environ. Sci. 7 399

    [18]

    Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim J Y 2014 Nanoscale 6 6679

    [19]

    Wang B H, Xiao X D, Chen T 2014 Nanoscale 6 12287

    [20]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Graätzel M 2012 J. Am. Chem. Soc. 134 17396

    [21]

    Xu Y Z, Shi J J, Lv S T, Zhu L F, Dong J, Wu H J, Xiao Y, Luo Y H, Wang S R, Li D M, Li X G, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 5651

    [22]

    Kazim S, Nazeeruddin M K, Grätzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2812

    [23]

    Polander L E, Pahner P, Schwarze M, Saalfrank M, Koerner C, Leo K 2014 APL Materials 2 081503

    [24]

    Leijtens T, Lim J, Teuscher J, Park T, Snaith H J 2013 Adv. Mater. 25 3227

    [25]

    Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N, Yi C Y, Nazeeruddin M K, Grätzel M 2011 J. Am. Chem. Soc. 133 18042

    [26]

    Krger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U 2001 Appl. Phys. Lett. 79 2085

    [27]

    Kwon Y S, Lim J, Yun H J, Kim Y H, Park T 2014 Energy Environ. Sci. 7 1454

    [28]

    Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [29]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [30]

    Jeon N J, Lee H G, Kim Y C, Seo J, Noh J H, Lee J, Seok S I 2014 J. Am. Chem. Soc. 136 7837

    [31]

    Christians J A, Fung R C, Kamat P V 2013 J. Am. Chem. Soc. 136 758

    [32]

    Wang J J, Wang S R, Li X G, Zhu L F, Meng Q B, Xiao Y, Li D M 2014 Chem. Commun. 50 5829

    [33]

    Lv S T, Han L Y, Xiao J Y, Zhu L F, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Li D M, Wang S R, Luo Y H, Meng Q B, Li X G 2014 Chem. Commun. 50 6931

    [34]

    Krishnamoorthy T, Kunwu F, Boix P P, Li H, Koh T M, Leong W L, Powar S, Grimsdale A, Grätzel M, Mathews N, Mhaisalkar S G 2014 J. Mater. Chem. A 2 6305

    [35]

    Li H R, Fu K, Hagfeldt A, Grätzel M, Mhaisalkar S G, Grimsdale A C 2014 Angew. Chem. Int. Ed. 53 4085

    [36]

    Krishna A, Sabba D, Li H R, Yin J, Boix P P, Soci C, Mhaisalkar S G, Grimsdale A C 2014 Chem. Sci. 5 2702

    [37]

    Do K, Choi H, Lim K, Jo H, Cho J W, Nazeeruddin M K, Ko J 2014 Chem. Commun. 50 10971

    [38]

    Choi H, Paek S, Lim N, Lee Y, Nazeeruddin M K, Ko J 2014 Chem. Eur. J. 20 10894

    [39]

    Xiao J Y, Han L Y, Zhu L F, Lv S T, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Xiao Y, Li D M, Wang S R, Luo Y H, Li X G, Meng Q B 2014 RSC Adv. 4 32918

    [40]

    Bi D Q, Yang L, Boschloo G, Hagfeldt A, Johansson E M 2013 J. Phys. Chem. Lett. 4 1532

    [41]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Graätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087

    [42]

    Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587

    [43]

    Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963

    [44]

    Zheng L L, Chung Y H, Ma Y Z, Zhang L P, Xiao L X, Chen Z J, Wang S F, Qu B, Gong Q H 2014 Chem. Commun. 50 11196

    [45]

    Zhou J Y, Wan X J, Liu Y S, Zuo Y, Li Z, He G R, Long G K, Ni W, Li C X, Su X C, Chen Y S 2012 J. Am. Chem. Soc. 134 16345

    [46]

    Qin P, Paek S, Dar M I, Pellet N, Ko J, Grätzel M, Nazeeruddin M K 2014 J. Am. Chem. Soc. 136 8516

    [47]

    Chen H W, Pan X, Liu W Q, Cai M, Kou D X, Huo Z P, Fang X Q, Dai S Y 2013 Chem. Commun. 49 7277

    [48]

    Guo Y L, Liu C, Inoue K, Harano K, Tanaka H, Nakamura E 2014 J. Mater. Chem. A 2 13827

    [49]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561

    [50]

    Lee J W, Park S, Ko M J, Son H J, Park N G 2014 ChemPhysChem 15 2595

    [51]

    You J B, Hong Z R, Yang Y M, Chen Q, Cai M, Song T B, Chen C C, Lu S R, Liu Y S, Zhou H P, Yang Y 2014 ACS Nano 8 1674

    [52]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [53]

    Chiang C H, Tseng Z L, Wu C G 2014 J. Mater. Chem. A 2 15897

    [54]

    Yan W B, Li Y L, Sun W H, Peng H T, Ye S Y, Liu Z W, Bian Z Q, Huang C H 2014 RSC Adv. 4 33039

    [55]

    Xiao Y M, Han G Y, Chang Y Z, Zhou H H, Li M Y, Li Y P 2014 J. Power Sources 267 1

    [56]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nat. Photonics 7 486

    [57]

    Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seo J W, Seok S I 2014 Energy Environ. Sci. 7 2614

    [58]

    Ito S, Tanaka S, Vahlman H, Nishino H, Manabe K, Lund P 2014 ChemPhysChem 15 1194

    [59]

    Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995

    [60]

    Chavhan S D, Miguel O, Grande H J, Gonzalez-Pedro V, Sánchez R S, Barea E M, Mora-Seró I, Ramon T Z 2014 J. Mater. Chem. A 2 12754

    [61]

    Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Grätzel M 2014 Nat. Commun. 5 3834

    [62]

    Subbiah A S, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar S K 2014 J. Phys. Chem. Lett. 5 1748

    [63]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107

    [64]

    Zhu Z L, Bai Y, Zhang T, Liu Z K, Long X, Wei Z H, Wang Z L, Zhang L X, Wang J N, Yan F, Yang S H 2014 Angew. Chem. Int. Ed. 53 12571

    [65]

    Wang K C, Jeng J Y, Shen P S, Chang Y C, Diau E W G, Tsai C H, Chao T Y, Hsu H C, Lin P Y, Chen P, Guo T F, Wen T C 2014 Sci. Rep. 4 4756

    [66]

    Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [3]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [4]

    Singh S P, Nagarjuna P 2014 Dalton Trans. 43 5247

    [5]

    Cai B, Xing Y D, Yang Z, Zhang W H, Qiu J S 2013 Energy Environ. Sci. 6 1480

    [6]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [7]

    Park N G 2013 J. Phys. Chem. Lett. 4 2423

    [8]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [9]

    Yang Z, Zhang W H 2014 Chin. J. Catal. 35 983

    [10]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [11]

    Shi J J, Dong J, Lv S T, Xu Y Z, Zhu L F, Xiao J Y, Xu X, Wu H J, Li D M, Luo Y H, Meng Q B 2014 Appl. Phys. Lett. 104 063901

    [12]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [13]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [14]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [15]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [16]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [17]

    Sun S Y, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G C, Sum T C, Lam Y M 2014 Energy Environ. Sci. 7 399

    [18]

    Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim J Y 2014 Nanoscale 6 6679

    [19]

    Wang B H, Xiao X D, Chen T 2014 Nanoscale 6 12287

    [20]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Graätzel M 2012 J. Am. Chem. Soc. 134 17396

    [21]

    Xu Y Z, Shi J J, Lv S T, Zhu L F, Dong J, Wu H J, Xiao Y, Luo Y H, Wang S R, Li D M, Li X G, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 5651

    [22]

    Kazim S, Nazeeruddin M K, Grätzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2812

    [23]

    Polander L E, Pahner P, Schwarze M, Saalfrank M, Koerner C, Leo K 2014 APL Materials 2 081503

    [24]

    Leijtens T, Lim J, Teuscher J, Park T, Snaith H J 2013 Adv. Mater. 25 3227

    [25]

    Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N, Yi C Y, Nazeeruddin M K, Grätzel M 2011 J. Am. Chem. Soc. 133 18042

    [26]

    Krger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U 2001 Appl. Phys. Lett. 79 2085

    [27]

    Kwon Y S, Lim J, Yun H J, Kim Y H, Park T 2014 Energy Environ. Sci. 7 1454

    [28]

    Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [29]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [30]

    Jeon N J, Lee H G, Kim Y C, Seo J, Noh J H, Lee J, Seok S I 2014 J. Am. Chem. Soc. 136 7837

    [31]

    Christians J A, Fung R C, Kamat P V 2013 J. Am. Chem. Soc. 136 758

    [32]

    Wang J J, Wang S R, Li X G, Zhu L F, Meng Q B, Xiao Y, Li D M 2014 Chem. Commun. 50 5829

    [33]

    Lv S T, Han L Y, Xiao J Y, Zhu L F, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Li D M, Wang S R, Luo Y H, Meng Q B, Li X G 2014 Chem. Commun. 50 6931

    [34]

    Krishnamoorthy T, Kunwu F, Boix P P, Li H, Koh T M, Leong W L, Powar S, Grimsdale A, Grätzel M, Mathews N, Mhaisalkar S G 2014 J. Mater. Chem. A 2 6305

    [35]

    Li H R, Fu K, Hagfeldt A, Grätzel M, Mhaisalkar S G, Grimsdale A C 2014 Angew. Chem. Int. Ed. 53 4085

    [36]

    Krishna A, Sabba D, Li H R, Yin J, Boix P P, Soci C, Mhaisalkar S G, Grimsdale A C 2014 Chem. Sci. 5 2702

    [37]

    Do K, Choi H, Lim K, Jo H, Cho J W, Nazeeruddin M K, Ko J 2014 Chem. Commun. 50 10971

    [38]

    Choi H, Paek S, Lim N, Lee Y, Nazeeruddin M K, Ko J 2014 Chem. Eur. J. 20 10894

    [39]

    Xiao J Y, Han L Y, Zhu L F, Lv S T, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Xiao Y, Li D M, Wang S R, Luo Y H, Li X G, Meng Q B 2014 RSC Adv. 4 32918

    [40]

    Bi D Q, Yang L, Boschloo G, Hagfeldt A, Johansson E M 2013 J. Phys. Chem. Lett. 4 1532

    [41]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Graätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087

    [42]

    Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587

    [43]

    Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963

    [44]

    Zheng L L, Chung Y H, Ma Y Z, Zhang L P, Xiao L X, Chen Z J, Wang S F, Qu B, Gong Q H 2014 Chem. Commun. 50 11196

    [45]

    Zhou J Y, Wan X J, Liu Y S, Zuo Y, Li Z, He G R, Long G K, Ni W, Li C X, Su X C, Chen Y S 2012 J. Am. Chem. Soc. 134 16345

    [46]

    Qin P, Paek S, Dar M I, Pellet N, Ko J, Grätzel M, Nazeeruddin M K 2014 J. Am. Chem. Soc. 136 8516

    [47]

    Chen H W, Pan X, Liu W Q, Cai M, Kou D X, Huo Z P, Fang X Q, Dai S Y 2013 Chem. Commun. 49 7277

    [48]

    Guo Y L, Liu C, Inoue K, Harano K, Tanaka H, Nakamura E 2014 J. Mater. Chem. A 2 13827

    [49]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561

    [50]

    Lee J W, Park S, Ko M J, Son H J, Park N G 2014 ChemPhysChem 15 2595

    [51]

    You J B, Hong Z R, Yang Y M, Chen Q, Cai M, Song T B, Chen C C, Lu S R, Liu Y S, Zhou H P, Yang Y 2014 ACS Nano 8 1674

    [52]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [53]

    Chiang C H, Tseng Z L, Wu C G 2014 J. Mater. Chem. A 2 15897

    [54]

    Yan W B, Li Y L, Sun W H, Peng H T, Ye S Y, Liu Z W, Bian Z Q, Huang C H 2014 RSC Adv. 4 33039

    [55]

    Xiao Y M, Han G Y, Chang Y Z, Zhou H H, Li M Y, Li Y P 2014 J. Power Sources 267 1

    [56]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nat. Photonics 7 486

    [57]

    Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seo J W, Seok S I 2014 Energy Environ. Sci. 7 2614

    [58]

    Ito S, Tanaka S, Vahlman H, Nishino H, Manabe K, Lund P 2014 ChemPhysChem 15 1194

    [59]

    Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995

    [60]

    Chavhan S D, Miguel O, Grande H J, Gonzalez-Pedro V, Sánchez R S, Barea E M, Mora-Seró I, Ramon T Z 2014 J. Mater. Chem. A 2 12754

    [61]

    Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Grätzel M 2014 Nat. Commun. 5 3834

    [62]

    Subbiah A S, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar S K 2014 J. Phys. Chem. Lett. 5 1748

    [63]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107

    [64]

    Zhu Z L, Bai Y, Zhang T, Liu Z K, Long X, Wei Z H, Wang Z L, Zhang L X, Wang J N, Yan F, Yang S H 2014 Angew. Chem. Int. Ed. 53 12571

    [65]

    Wang K C, Jeng J Y, Shen P S, Chang Y C, Diau E W G, Tsai C H, Chao T Y, Hsu H C, Lin P Y, Chen P, Guo T F, Wen T C 2014 Sci. Rep. 4 4756

    [66]

    Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [4] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [5] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [6] 孙盟杰, 何志群, 郑毅帆, 邵宇川. EDTA/SnO2双层复合电子传输层在钙钛矿电池中的应用. 物理学报, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [7] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [10] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [11] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [12] 崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明. 钙钛矿铁电半导体的光催化研究现状及其展望. 物理学报, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [13] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [14] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [15] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [16] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [19] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] 郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖. 掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究. 物理学报, 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
计量
  • 文章访问数:  13494
  • PDF下载量:  4499
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-20
  • 修回日期:  2014-11-27
  • 刊出日期:  2015-02-05

/

返回文章
返回