搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯衍生物作为有机太阳能电池界面材料的研究进展

黄林泉 周玲玉 于为 杨栋 张坚 李灿

引用本文:
Citation:

石墨烯衍生物作为有机太阳能电池界面材料的研究进展

黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿

Recent progress in graphene and its derivatives as interfacial layers in organic solar cells

Huang Lin-Quan, Zhou Ling-Yu, Yu Wei, Yang Dong, Zhang Jian, Li Can
PDF
导出引用
  • 本文综述了石墨烯及其衍生物作为界面材料在有机太阳能电池中的应用, 包括作为阳极界面层、阴极界面层和叠层电池中间层等方面. 氧化石墨烯由于较好的透光性, 易于分散在水溶液中与溶液加工等优点已被应用在有机太阳能电池中. 对氧化石墨烯作为阳极界面层的研究包括通过部分还原或掺杂提高其导电性、通过引入高负电性原子提高其表面功函数, 以及通过与其他材料复合提高性能等. 同时, 本文综述了石墨烯衍生物及复合材料作为有机太阳能电池阴极界面层和叠层电池中间层的研究. 最后本文展望了石墨烯及其衍生物在有机太阳能电池与有机无机复合钙钛矿太阳能电池中的应用前景.
    This review surveys the application of graphene and its derivatives in organic solar cells, used as interfacial layers: including anode interfacial layers, cathode interfacial layers, and intermediate layers in a tandem device. Research work has be done for increasing the electroconductivity by reducing the oxide to partially oxidized graphene, as well as chemically modifying or making composite interfacial layer. Additionally, the researches on graphene derivatives and combined interfacial layers used as a cathode interfacial layer or an intermediate layer in the tandem device are discussed. Finally, this review suggests that graphene and its derivatives are potential to be used in perovskite solar cells.
    • 基金项目: 国家自然科学基金(批准号: 20904057和21374120) 与广西“自治区八桂学者”专项经费资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 20904057, 21374120), and the Bagui Project of Guangxi Autonomous Region.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Yang G W, Xu C L, Li H L 2008 Chem. Commun. 6537

    [3]

    Dou L, You J, Hong Z, Xu Z, Li G, Street R A, Yang Y 2013 Adv. Mater. 25 6642

    [4]

    Qian D, Ma W, Li Z, Guo X, Zhang S, Ye L, Ade H, Tan Z a, Hou J 2013 J. Am. Chem. Soc. 135 8464

    [5]

    He Z, Wu H, Cao Y 2014 Adv. Mater. 26 1006

    [6]

    Chen L M, Hong Z, Li G, Yang Y 2009 Adv. Mater. 21 1434

    [7]

    Gnes S, Neugebauer H, Sariciftci N S 2007 Chem. Rev. 107 1324

    [8]

    Chen Y, Wan X, Long G 2013 Acc. Chem. Res. 46 2645

    [9]

    Coughlin J E, Henson Z B, Welch G C, Bazan G C 2013 Acc. Chem. Res. 47 257

    [10]

    Lin Y, Li Y, Zhan X 2012 Chem. Soc. Rev. 41 4245

    [11]

    Chen Y H, Lin L Y, Lu C W, Lin F, Huang Z Y, Lin H W, Wang P H, Liu Y H, Wong K T, Wen J, Miller D J, Darling S B 2012 J. Am. Chem. Soc. 134 13616

    [12]

    Fitzner R, Mena-Osteritz E, Mishra A, Schulz G, Reinold E, Weil M, Körner C, Ziehlke H, Elschner C, Leo K, Riede M, Pfeiffer M, Uhrich C, Bäuerle P 2012 J. Am. Chem. Soc. 134 11064

    [13]

    Kong J, Hwang I W, Lee K 2014 Adv. Mater. 10.1002adma.201402182

    [14]

    You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nature Commun. 4 1446

    [15]

    Cheng Y J, Yang S H, Hsu C S 2009 Chem. Rev. 109 5868

    [16]

    Coakley K M, McGehee M D 2004 Chem. Mater. 16 4533

    [17]

    Weinberger B R, Akhtar M, Gau S C 1982 Synth. Met. 4 187

    [18]

    Tang C W 1986 Appl. Phys. Lett. 48 183

    [19]

    Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J 1995 Science 270 1789

    [20]

    Spanggaard H, Krebs F C 2004 Sol. Energy Mater. Sol. Cells 83 125

    [21]

    Sasajima I, Uesaka S, Kuwabara T, Yamaguchi T, Takahashi K 2011 Org. Electron. 12 113

    [22]

    Hecht D S, Hu L, Irvin G 2011 Adv. Mater. 23 1482

    [23]

    Huang X, Zeng Z, Fan Z, Liu J, Zhang H 2012 Adv. Mater. 24 5979

    [24]

    Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, Yin S, Chen Y, Wei J 2009 Adv. Funct. Mater. 19 894

    [25]

    Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y 2008 Adv. Mater. 20 3924

    [26]

    Braun S, Salaneck W R, Fahlman M 2009 Adv. Mater. 21 1450

    [27]

    Po R, Carbonera C, Bernardi A, Camaioni N 2011 Energy Environ. Sci. 4 285

    [28]

    Steim R, Kogler F R, Brabec C J 2010 J. Mater. Chem. 20 2499

    [29]

    Steirer K X, Ndione P F, Widjonarko N E, Lloyd M T, Meyer J, Ratcliff E L, Kahn A, Armstrong N R, Curtis C J, Ginley D S, Berry J J, Olson D C 2011 Adv. Energy Mater. 1 813

    [30]

    Zilberberg K, Trost S, Schmidt H, Riedl T 2011 Adv. Energy Mater. 1 377

    [31]

    Murase S, Yang Y 2012 Adv. Mater. 24 2459

    [32]

    Li X, Choy W C H, Xie F, Zhang S, Hou J 2013 J. Mater. Chem. A 1 6614

    [33]

    Zhang F, Johansson M, Andersson M R, Hummelen J C, Inganäs O 2002 Adv. Mater. 14 662

    [34]

    Zhou H, Zhang Y, Mai C K, Collins S D, Nguyen T Q, Bazan G C, Heeger A J 2014 Adv. Mater. 26 780

    [35]

    Gupta D, Bag M, Narayan K S 2008 Appl. Phys. Lett. 92 093301

    [36]

    Reese M O, White M S, Rumbles G, Ginley D S, Shaheen S E 2008 Appl. Phys. Lett. 92 053307

    [37]

    Huang J, Xu Z, Yang Y 2007 Adv. Funct. Mater. 17 1966

    [38]

    Jabbour G E, Kippelen B, Armstrong N R, Peyghambarian N 1998 Appl. Phys. Lett. 73 1185

    [39]

    Kim J Y, Kim S H, Lee H H, Lee K, Ma W, Gong X, Heeger A J 2006 Adv. Mater. 18 572

    [40]

    White M S, Olson D C, Shaheen S E, Kopidakis N, Ginley D S 2006 Appl. Phys. Lett. 89 143517

    [41]

    Kim J H, Huh S Y, Kim T I, Lee H H 2008 Appl. Phys. Lett. 93 143305

    [42]

    Varotto A, Treat N D, Jo J, Shuttle C G, Batara N A, Brunetti F G, Seo J H, Chabinyc M L, Hawker C J, Heeger A J, Wudl F 2011 Angew. Chem. Int. Ed. 50 5166

    [43]

    Zhang F, Ceder M, Inganäs O 2007 Adv. Mater. 19 1835

    [44]

    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y 2012 Nature Photon. 6 591

    [45]

    Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327

    [46]

    Yip H L, Hau S K, Baek N S, Ma H, Jen A K Y 2008 Adv. Mater. 20 2376

    [47]

    Liu J, Durstock M, Dai L 2014 Energy Environ. Sci. 7 1297

    [48]

    Li S S, Tu K H, Lin C C, Chen C W, Chhowalla M 2010 ACS Nano 4 3169

    [49]

    Gao Y, Yip H L, Hau S K, O'Malley K M, Cho N C, Chen H, Jen A K Y 2010 Appl. Phys. Lett. 97 203306

    [50]

    Yun J M, Yeo J S, Kim J, Jeong H G, Kim D Y, Noh Y J, Kim S S, Ku B C, Na S I 2011 Adv. Mater. 23 4923

    [51]

    Liu J, Xue Y, Dai L 2012 J. Phys. Chem. Lett. 3 1928

    [52]

    Jeon Y J, Yun J M, Kim D Y, Na S I, Kim S S 2012 Sol. Energy Mater. Sol. Cells 105 96

    [53]

    Liu X, Kim H, Guo L J 2013 Org. Electron. 14 591

    [54]

    Kim J, Tung V C, Huang J 2011 Adv. Energy Mater. 1 1052

    [55]

    Murray I P, Lou S J, Cote L J, Loser S, Kadleck C J, Xu T, Szarko J M, Rolczynski B S, Johns J E, Huang J, Yu L, Chen L X, Marks T J, Hersam M C 2011 J. Phys. Chem. Lett. 2 3006

    [56]

    Yang D, Zhou L, Chen L, Zhao B, Zhang J, Li C 2012 Chem. Commun. 48 8078

    [57]

    Yang D, Zhou L, Yu W, Zhang J, Li C 2014 Adv. Energy Mater. DOI.10.1002/aenm.201400591

    [58]

    Stratakis E, Savva K, Konios D, Petridis C, Kymakis E 2014 Nanoscale 6 6925

    [59]

    Kim S H, Lee C H, Yun J M, Noh Y J, Kim S S, Lee S, Jo S M, Joh H I, Na S I 2014 Nanoscale 6 7183

    [60]

    Chuang M K, Lin S W, Chen F C, Chu C W, Hsu C S 2014 Nanoscale 6 1573

    [61]

    Fan G Q, Zhuo Q Q, Zhu J J, Xu Z Q, Cheng P P, Li Y Q, Sun X H, Lee S T, Tang J X 2012 J. Mater. Chem. 22 15614

    [62]

    Stratakis E, Stylianakis M M, Koudoumas E, Kymakis E 2013 Nanoscale 5 4144

    [63]

    Ryu M S, Jang J 2011 Sol. Energy Mater. Sol. Cells 95 2893

    [64]

    Chao Y H, Wu J S, Wu C E, Jheng J F, Wang C L, Hsu C S 2013 Adv. Energy Mater. 3 1279

    [65]

    Park Y, Soon Choi K, Young Kim S 2012 Physica Status Solidi 209 1363

    [66]

    Liu J, Kim G H, Xue Y, Kim J Y, Baek J B, Durstock M, Dai L 2014 Adv. Mater. 26 786

    [67]

    Liu J, Xue Y, Gao Y, Yu D, Durstock M, Dai L 2012 Adv. Mater. 24 2228

    [68]

    Qu S, Li M, Xie L, Huang X, Yang J, Wang N, Yang S 2013 ACS Nano 7 4070

    [69]

    Wang D H, Kim J K, Seo J H, Park I, Hong B H, Park J H, Heeger A J 2013 Angew. Chem. Int. Ed. 52 2874

    [70]

    Beliatis M J, Gandhi K K, Rozanski L J, Rhodes R, McCafferty L, Alenezi M R, Alshammari A S, Mills C A, Jayawardena K D G I, Henley S J, Silva S R P 2014 Adv. Mater. 26 2078

    [71]

    Yu H Z 2013 Acta Phys. Sin 62 027201

    [72]

    Sista S, Park M H, Hong Z R, Wu Y, Hou J H, Kwan W L, Li G, Yang Y 2010 Adv. Mater. 22 380

    [73]

    Gilot J, Wienk M M, Janssen R A J 2010 Adv. Mater. 22 E67

    [74]

    Tung V C, Kim J, Huang J 2012 Adv. Energy Mater. 2 299

    [75]

    Tung V C, Kim J, Cote L J, Huang J 2011 J. Am. Chem. Soc. 133 9262

    [76]

    Tong S W, Wang Y, Zheng Y, Ng M F, Loh K P 2011 Adv. Funct. Mater. 21 4430

    [77]

    Yusoff A R b M, Jose da Silva W, Kim H P, Jang J 2013 Nanoscale 5 11051

    [78]

    Park N G 2014 Mater. Today DOI.10.1016/j. mattod.2014.07.007

    [79]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107

    [80]

    Zhao Y, Nardes A M, Zhu K 2014 Appl. Phys. Lett. 104 213906

    [81]

    Christians J A, Fung R C M, Kamat P V 2013 J. Am. Chem. Soc. 136 758

    [82]

    Burschka J, Pellet N, Moon S J, Humphry Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316

    [83]

    Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J 2014 Energy Environ. Sci. 7 2619

    [84]

    Seo J, Park S, Chan Kim Y, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [85]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [86]

    Wang J T W, Ball J M, Barea E M, Abate A, Alexander Webber J A, Huang J, Saliba M, Mora Sero I, Bisquert J, Snaith H J, Nicholas R J 2013 Nano Lett. 14 724

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Yang G W, Xu C L, Li H L 2008 Chem. Commun. 6537

    [3]

    Dou L, You J, Hong Z, Xu Z, Li G, Street R A, Yang Y 2013 Adv. Mater. 25 6642

    [4]

    Qian D, Ma W, Li Z, Guo X, Zhang S, Ye L, Ade H, Tan Z a, Hou J 2013 J. Am. Chem. Soc. 135 8464

    [5]

    He Z, Wu H, Cao Y 2014 Adv. Mater. 26 1006

    [6]

    Chen L M, Hong Z, Li G, Yang Y 2009 Adv. Mater. 21 1434

    [7]

    Gnes S, Neugebauer H, Sariciftci N S 2007 Chem. Rev. 107 1324

    [8]

    Chen Y, Wan X, Long G 2013 Acc. Chem. Res. 46 2645

    [9]

    Coughlin J E, Henson Z B, Welch G C, Bazan G C 2013 Acc. Chem. Res. 47 257

    [10]

    Lin Y, Li Y, Zhan X 2012 Chem. Soc. Rev. 41 4245

    [11]

    Chen Y H, Lin L Y, Lu C W, Lin F, Huang Z Y, Lin H W, Wang P H, Liu Y H, Wong K T, Wen J, Miller D J, Darling S B 2012 J. Am. Chem. Soc. 134 13616

    [12]

    Fitzner R, Mena-Osteritz E, Mishra A, Schulz G, Reinold E, Weil M, Körner C, Ziehlke H, Elschner C, Leo K, Riede M, Pfeiffer M, Uhrich C, Bäuerle P 2012 J. Am. Chem. Soc. 134 11064

    [13]

    Kong J, Hwang I W, Lee K 2014 Adv. Mater. 10.1002adma.201402182

    [14]

    You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nature Commun. 4 1446

    [15]

    Cheng Y J, Yang S H, Hsu C S 2009 Chem. Rev. 109 5868

    [16]

    Coakley K M, McGehee M D 2004 Chem. Mater. 16 4533

    [17]

    Weinberger B R, Akhtar M, Gau S C 1982 Synth. Met. 4 187

    [18]

    Tang C W 1986 Appl. Phys. Lett. 48 183

    [19]

    Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J 1995 Science 270 1789

    [20]

    Spanggaard H, Krebs F C 2004 Sol. Energy Mater. Sol. Cells 83 125

    [21]

    Sasajima I, Uesaka S, Kuwabara T, Yamaguchi T, Takahashi K 2011 Org. Electron. 12 113

    [22]

    Hecht D S, Hu L, Irvin G 2011 Adv. Mater. 23 1482

    [23]

    Huang X, Zeng Z, Fan Z, Liu J, Zhang H 2012 Adv. Mater. 24 5979

    [24]

    Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, Yin S, Chen Y, Wei J 2009 Adv. Funct. Mater. 19 894

    [25]

    Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y 2008 Adv. Mater. 20 3924

    [26]

    Braun S, Salaneck W R, Fahlman M 2009 Adv. Mater. 21 1450

    [27]

    Po R, Carbonera C, Bernardi A, Camaioni N 2011 Energy Environ. Sci. 4 285

    [28]

    Steim R, Kogler F R, Brabec C J 2010 J. Mater. Chem. 20 2499

    [29]

    Steirer K X, Ndione P F, Widjonarko N E, Lloyd M T, Meyer J, Ratcliff E L, Kahn A, Armstrong N R, Curtis C J, Ginley D S, Berry J J, Olson D C 2011 Adv. Energy Mater. 1 813

    [30]

    Zilberberg K, Trost S, Schmidt H, Riedl T 2011 Adv. Energy Mater. 1 377

    [31]

    Murase S, Yang Y 2012 Adv. Mater. 24 2459

    [32]

    Li X, Choy W C H, Xie F, Zhang S, Hou J 2013 J. Mater. Chem. A 1 6614

    [33]

    Zhang F, Johansson M, Andersson M R, Hummelen J C, Inganäs O 2002 Adv. Mater. 14 662

    [34]

    Zhou H, Zhang Y, Mai C K, Collins S D, Nguyen T Q, Bazan G C, Heeger A J 2014 Adv. Mater. 26 780

    [35]

    Gupta D, Bag M, Narayan K S 2008 Appl. Phys. Lett. 92 093301

    [36]

    Reese M O, White M S, Rumbles G, Ginley D S, Shaheen S E 2008 Appl. Phys. Lett. 92 053307

    [37]

    Huang J, Xu Z, Yang Y 2007 Adv. Funct. Mater. 17 1966

    [38]

    Jabbour G E, Kippelen B, Armstrong N R, Peyghambarian N 1998 Appl. Phys. Lett. 73 1185

    [39]

    Kim J Y, Kim S H, Lee H H, Lee K, Ma W, Gong X, Heeger A J 2006 Adv. Mater. 18 572

    [40]

    White M S, Olson D C, Shaheen S E, Kopidakis N, Ginley D S 2006 Appl. Phys. Lett. 89 143517

    [41]

    Kim J H, Huh S Y, Kim T I, Lee H H 2008 Appl. Phys. Lett. 93 143305

    [42]

    Varotto A, Treat N D, Jo J, Shuttle C G, Batara N A, Brunetti F G, Seo J H, Chabinyc M L, Hawker C J, Heeger A J, Wudl F 2011 Angew. Chem. Int. Ed. 50 5166

    [43]

    Zhang F, Ceder M, Inganäs O 2007 Adv. Mater. 19 1835

    [44]

    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y 2012 Nature Photon. 6 591

    [45]

    Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327

    [46]

    Yip H L, Hau S K, Baek N S, Ma H, Jen A K Y 2008 Adv. Mater. 20 2376

    [47]

    Liu J, Durstock M, Dai L 2014 Energy Environ. Sci. 7 1297

    [48]

    Li S S, Tu K H, Lin C C, Chen C W, Chhowalla M 2010 ACS Nano 4 3169

    [49]

    Gao Y, Yip H L, Hau S K, O'Malley K M, Cho N C, Chen H, Jen A K Y 2010 Appl. Phys. Lett. 97 203306

    [50]

    Yun J M, Yeo J S, Kim J, Jeong H G, Kim D Y, Noh Y J, Kim S S, Ku B C, Na S I 2011 Adv. Mater. 23 4923

    [51]

    Liu J, Xue Y, Dai L 2012 J. Phys. Chem. Lett. 3 1928

    [52]

    Jeon Y J, Yun J M, Kim D Y, Na S I, Kim S S 2012 Sol. Energy Mater. Sol. Cells 105 96

    [53]

    Liu X, Kim H, Guo L J 2013 Org. Electron. 14 591

    [54]

    Kim J, Tung V C, Huang J 2011 Adv. Energy Mater. 1 1052

    [55]

    Murray I P, Lou S J, Cote L J, Loser S, Kadleck C J, Xu T, Szarko J M, Rolczynski B S, Johns J E, Huang J, Yu L, Chen L X, Marks T J, Hersam M C 2011 J. Phys. Chem. Lett. 2 3006

    [56]

    Yang D, Zhou L, Chen L, Zhao B, Zhang J, Li C 2012 Chem. Commun. 48 8078

    [57]

    Yang D, Zhou L, Yu W, Zhang J, Li C 2014 Adv. Energy Mater. DOI.10.1002/aenm.201400591

    [58]

    Stratakis E, Savva K, Konios D, Petridis C, Kymakis E 2014 Nanoscale 6 6925

    [59]

    Kim S H, Lee C H, Yun J M, Noh Y J, Kim S S, Lee S, Jo S M, Joh H I, Na S I 2014 Nanoscale 6 7183

    [60]

    Chuang M K, Lin S W, Chen F C, Chu C W, Hsu C S 2014 Nanoscale 6 1573

    [61]

    Fan G Q, Zhuo Q Q, Zhu J J, Xu Z Q, Cheng P P, Li Y Q, Sun X H, Lee S T, Tang J X 2012 J. Mater. Chem. 22 15614

    [62]

    Stratakis E, Stylianakis M M, Koudoumas E, Kymakis E 2013 Nanoscale 5 4144

    [63]

    Ryu M S, Jang J 2011 Sol. Energy Mater. Sol. Cells 95 2893

    [64]

    Chao Y H, Wu J S, Wu C E, Jheng J F, Wang C L, Hsu C S 2013 Adv. Energy Mater. 3 1279

    [65]

    Park Y, Soon Choi K, Young Kim S 2012 Physica Status Solidi 209 1363

    [66]

    Liu J, Kim G H, Xue Y, Kim J Y, Baek J B, Durstock M, Dai L 2014 Adv. Mater. 26 786

    [67]

    Liu J, Xue Y, Gao Y, Yu D, Durstock M, Dai L 2012 Adv. Mater. 24 2228

    [68]

    Qu S, Li M, Xie L, Huang X, Yang J, Wang N, Yang S 2013 ACS Nano 7 4070

    [69]

    Wang D H, Kim J K, Seo J H, Park I, Hong B H, Park J H, Heeger A J 2013 Angew. Chem. Int. Ed. 52 2874

    [70]

    Beliatis M J, Gandhi K K, Rozanski L J, Rhodes R, McCafferty L, Alenezi M R, Alshammari A S, Mills C A, Jayawardena K D G I, Henley S J, Silva S R P 2014 Adv. Mater. 26 2078

    [71]

    Yu H Z 2013 Acta Phys. Sin 62 027201

    [72]

    Sista S, Park M H, Hong Z R, Wu Y, Hou J H, Kwan W L, Li G, Yang Y 2010 Adv. Mater. 22 380

    [73]

    Gilot J, Wienk M M, Janssen R A J 2010 Adv. Mater. 22 E67

    [74]

    Tung V C, Kim J, Huang J 2012 Adv. Energy Mater. 2 299

    [75]

    Tung V C, Kim J, Cote L J, Huang J 2011 J. Am. Chem. Soc. 133 9262

    [76]

    Tong S W, Wang Y, Zheng Y, Ng M F, Loh K P 2011 Adv. Funct. Mater. 21 4430

    [77]

    Yusoff A R b M, Jose da Silva W, Kim H P, Jang J 2013 Nanoscale 5 11051

    [78]

    Park N G 2014 Mater. Today DOI.10.1016/j. mattod.2014.07.007

    [79]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107

    [80]

    Zhao Y, Nardes A M, Zhu K 2014 Appl. Phys. Lett. 104 213906

    [81]

    Christians J A, Fung R C M, Kamat P V 2013 J. Am. Chem. Soc. 136 758

    [82]

    Burschka J, Pellet N, Moon S J, Humphry Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316

    [83]

    Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J 2014 Energy Environ. Sci. 7 2619

    [84]

    Seo J, Park S, Chan Kim Y, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [85]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [86]

    Wang J T W, Ball J M, Barea E M, Abate A, Alexander Webber J A, Huang J, Saliba M, Mora Sero I, Bisquert J, Snaith H J, Nicholas R J 2013 Nano Lett. 14 724

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [3] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [4] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [5] 王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟. 醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能. 物理学报, 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [6] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [7] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [8] 兰伟霞, 顾嘉陆, 高晓辉, 廖英杰, 钟宋义, 张卫东, 彭艳, 孙钰, 魏斌. 基于光子晶体的有机太阳能电池研究进展. 物理学报, 2021, 70(12): 128804. doi: 10.7498/aps.70.20201805
    [9] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [10] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [11] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌. 基于三元非富勒烯体系的高效有机太阳能电池. 物理学报, 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [12] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [13] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [14] 赵泽宇, 刘晋侨, 李爱武, 牛立刚, 徐颖. 基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究. 物理学报, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [15] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [16] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [17] 李萌, 牛贺莹, 姚路炎, 王栋梁, 周忠坡, 马恒. 胆甾液晶掺杂活性层对有机太阳能电池性能的影响. 物理学报, 2014, 63(24): 248403. doi: 10.7498/aps.63.248403
    [18] 王鹏, 郭闰达, 陈宇, 岳守振, 赵毅, 刘式墉. 梯度掺杂体异质结对有机太阳能电池光电转换效率的影响. 物理学报, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [19] 李青, 李海强, 赵娟, 黄江, 于军胜. 阴极修饰层对 SubPc/C60 倒置型有机太阳能电池性能的影响. 物理学报, 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [20] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
计量
  • 文章访问数:  9588
  • PDF下载量:  2543
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-20
  • 修回日期:  2014-12-04
  • 刊出日期:  2015-02-05

/

返回文章
返回