搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双层电子传输层钙钛矿太阳能电池的物理机制

周玚 任信钢 闫业强 任昊 杜红梅 蔡雪原 黄志祥

引用本文:
Citation:

基于双层电子传输层钙钛矿太阳能电池的物理机制

周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥

Physical mechanism of perovskite solar cell based on double electron transport layer

Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang
PDF
HTML
导出引用
  • 近年来基于钙钛矿材料的太阳能电池以其优异的光电转换效率, 成为了最具有发展潜力的光伏器件. 受制于制备工艺及界面传输层的材料, 钙钛矿太阳能电池存在体内、界面缺陷和能级错位等问题, 导致非辐射复合损耗增加, 妨碍其效率进一步提升及工作稳定性. 因此, 降低能级错位及界面缺陷态等损耗对于实现高效钙钛矿太阳能电池至关重要. 本文研究了钙钛矿太阳能电池中双层电子传输层及其阶梯状导带结构对器件性能的影响, 揭示了活性层与传输层之间的导带偏移量对两者之间界面复合及性能提升的机理. 另外, 研究了体内与界面缺陷态密度对单层及双层电子传输层结构下电池性能的影响, 发现在高缺陷态密度下, 双层结构比单层结构具有更高的效率. 研究表明双层电子传输层结构不仅能改善界面能级错位损耗, 还可以降低电池性能受体内及界面缺陷影响, 对制备高性能太阳能电池具有指导意义.
    With their excellent photoelectric properties, perovskite solar cells have become the most promising photovoltaic devices in recent years. However, owing to defects and energy level misalignment, the non-radiative recombination loss of the perovskite solar cell will increase, which hinders the its efficiency and operational stability from being improved further. Therefore, it is very important to reduce the loss caused by energy level misalignment for realizing high-efficiency perovskite solar cells. In order to solve the above-mentioned problems, perovskite solar cell with dual electron transport layer (ETL) is studied in this work. The dual-layer structure forms a stepped conduction band structure to reduce the conduction band offset between the active layer and the transport layer, which reduces the interface recombination between the two structures and improves device performance. In addition, the influences of the defect density on the cell performance for the two ETL structures are also discussed. With the continuous increase of the defect density, the performance of the single-layer structure decreases more obviously. While the dual ETL structure can alleviate the performance dependence on the defect density in comparison with the single ETL structure. Therefore, the use of dual ETL can improve the performance of perovskite solar cells and defect tolerance, which provides guidance for designing high-performance solar cells.
      通信作者: 任信钢, xgren@ahu.edu.cn ; 蔡雪原, cai_welcome@163.com
    • 基金项目: 国家自然科学基金(批准号: 62171001, 61701003, 61901001, 61701001, U20A20164, 61871001, 61971001)、安徽省国家自然科学基金(批准号: 2108085MF198, 1808085QF179, 1908085QF259, 1908085QF251)、安徽高校协同创新项目(批准号: GXXT-2020-050, GXXT-2020-051, GXXT-2021-027)、安徽大学物质科学与信息技术研究院学科建设开放基金和安徽省博士后人员科研活动经费资助项目(批准号: 2019B348)资助的课题.
      Corresponding author: Ren Xin-Gang, xgren@ahu.edu.cn ; Cai Xue-Yuan, cai_welcome@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171001, 61701003, 61901001, 61701001, U20A20164, 61871001, 61971001), the National Natural Science Foundation of Anhui Province, China (Grant Nos. 2108085MF198, 1808085QF179, 1908085QF259, 1908085QF251), the University Synergy Innovation Program of Anhui Province, China (Grant Nos. GXXT-2020-050, GXXT-2020-051, GXXT-2021-027), the Open Fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University, China, and the Postdoctoral Science Foundation Founded Project of Anhui Province, China (Grant No. 2019B348).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Akkerman Q A, Raino G, Kovalenko M V, Manna L 2018 Nat. Mater 17 394Google Scholar

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [4]

    Mazzarella L, Lin Y H, Kirner S, et al. 2019 Adv. Energy Mater. 9 14Google Scholar

    [5]

    Kim M, Jeong J, Lu H Z, et al. 2022 Science 375 302Google Scholar

    [6]

    Jena A K, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar

    [7]

    Kim J Y, Lee J W, Jung H S, Shin H, Park N G 2020 Chem. Rev. 120 7867Google Scholar

    [8]

    Ma S, Cai M L, Cheng T, Ding X H, Shi X Q, Alsaedi A, Hayat T, Ding Y, Tan Z, Dai S Y 2018 Sci. China Mater. 61 1257Google Scholar

    [9]

    Shi P, Ding Y, Liu C, Yang Y, Arain Z, Cai M, Ren Y, Hayat T, Alsaedi A, Dai S 2019 Sci. China Mater. 62 1846Google Scholar

    [10]

    Shi X Q, Chen J Q, Wu Y H, Cai M L, Shi P J, Ma S, Liu C, Liu X P, Dai S Y 2020 ACS Sustain. Chem. Eng. 8 4267Google Scholar

    [11]

    Bi D Q, Yi C Y, Luo J S, Decoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Gratzel M 2016 Nat. Energy 1 16142Google Scholar

    [12]

    Shubham, Raghvendra, Pathak C, Pandey S K 2020 IEEE Trans. Electro. Dev. 67 2837Google Scholar

    [13]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081Google Scholar

    [14]

    Zheng X P, Chen B, Dai J, Fang Y J, Bai Y, Lin Y Z, Wei H T, Zeng X C, Huang J S 2017 Nat. Energy 2 17102Google Scholar

    [15]

    Kim G W, Kang G, Kim J, Lee G Y, Kim H I, Pyeon L, Lee J, Park T 2016 Energ. Environ. Sci. 9 2326Google Scholar

    [16]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [17]

    甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流 2021 物理学报 70 038801Google Scholar

    Gan Y J, Jiang Q B, Qin B Y, Bi X G, Li Q L 2021 Acta Phys. Sin. 70 038801Google Scholar

    [18]

    Gao Y, Wu Y, Liu Y, Chen C, Shen X, Bai X, Shi Z, Yu W W, Dai Q, Zhang Y 2019 Solar RRL 3 1900314Google Scholar

    [19]

    Li N, Yan J, Ai Y, Jiang E, Lin L, Shou C, Yan B, Sheng J, Ye J 2019 Sci. China Mater. 63 207Google Scholar

    [20]

    Shi X, Tao Y, Li Z, Peng H, Cai M, Liu X, Zhang Z, Dai S 2021 Sci. China Mater. 64 1858Google Scholar

    [21]

    丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 物理学报 64 038802Google Scholar

    Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802Google Scholar

    [22]

    Wang D, Wu C, Luo W, Guo X, Qu B, Xiao L, Chen Z 2018 Acs Appl. Energ. Mater. 1 2215Google Scholar

    [23]

    Wang Y, Duan C, Zhang X, Rujisamphan N, Liu Y, Li Y, Yuan J, Ma W 2020 ACS Appl. Mater. Inter. 12 31659Google Scholar

    [24]

    Ren X, Wang Z, Sha W E I, Choy W C H 2017 ACS Photonics 4 934Google Scholar

    [25]

    Singh N, Agarwal A, Agarwal M 2021 Superlattice. Microst 149 106750Google Scholar

    [26]

    Azri F, Meftah A, Sengouga N, Meftah A 2019 Solar Energy 181 372Google Scholar

    [27]

    Ahmed S, Jannat F, Khan M A K, Alim M A 2021 Optik 225 165765Google Scholar

    [28]

    Tan K, Lin P, Wang G, Liu Y, Xu Z C, Lin Y X 2016 Solid State Electron 126 75Google Scholar

    [29]

    Zhao P, Lin Z H, Wang J P, Yue M, Su J, Zhang J C, Chang J J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504Google Scholar

  • 图 1  (a) 单双层ETL结构示意图; (b) 双层ETL结构能级示意图

    Fig. 1.  (a) Schematic diagram of single and double ETL structures; (b) diagram of energy level of double ETL structure.

    图 2  (a) 不同亲和能情况下的J-V曲线图; (b) CBO和$ \varPhi $示意图

    Fig. 2.  (a) J-V curves under different affinities; (b) schematic diagram of CBO and $ \varPhi $.

    图 3  改变$ \varPhi $对电池性能的影响 (a) J-V曲线; (b) 能级分布图; (c) 活性层中的电子分布图; (d) 活性层中的空穴分布图

    Fig. 3.  Influence of changing $ \varPhi $ on battery performance: (a) J-V curves; (b) energy level distribution diagrams; (c) electron distribution in the active layer; (d) hole distribution in the active layer.

    图 4  (a) 悬崖势垒的示意图; (b) 活性层与ETL界面复合电流随Ea变化

    Fig. 4.  (a) Schematic diagram of cliff barrier; (b) recombination current at the interface between the active layer and electron transport layer varies with Ea.

    图 5  单层ETL与双层ETL结构的J-V曲线对比

    Fig. 5.  J-V curve comparison of single and double ETL structure.

    图 6  (a) TiO2层亲和能的变化; (b) Voc, FF与PCE随TiO2层亲和能的变化

    Fig. 6.  (a) Change of the affinity for TiO2 layer; (b) change of the affinity for Voc, FF and PCE with the TiO2 layer.

    图 7  不同界面缺陷态密度情况下钙钛矿太阳能电池J-V曲线 (a) 双层ETL; (b) 单层ETL

    Fig. 7.  J-V curve of perovskite solar cell under different interface defect densities: (a) Double ETL; (b) single ETL

    图 8  单层ETL和双层ETL结构下的电子浓度分布

    Fig. 8.  Electron concentration distribution diagram under single and double ETL structure.

    图 9  活性层缺陷态密度对单层和双层ETL结构性能影响对比

    Fig. 9.  Effect comparison of the active layer defect density of states on the performance of the single and double ETL structures.

    表 1  仿真结构中材料参数

    Table 1.  Simulation structure parameters.

    Layer propertiesSpiro-OMeTADCH3NH3PbI3SnO2TiO2
    厚度 L/nm350[25]400[26]50[27]50[27]
    电子亲和能 χ/eV3.0[25]3.9[26]4.5[23]4.2[23]
    介电常数 εr3.0[25]6.5[26]9.0[27]9.0[27]
    禁带宽度 Eg/eV2.2[25]1.5[26]4.0[23]3.6[23]
    受主掺杂浓度 NA/cm–31.0 × 1018[25]5.21 × 109[26]0[27]0[27]
    施主掺杂浓度 ND/cm–30[25]5.21 × 109[26]1.0 × 1018[27]1.0 × 1018[27]
    电子迁移率 μn/(cm2·V–1·s–1)2.0 × 10–4[25]20[26]20[27]20[27]
    空穴迁移率 μp/(cm2·V–1·s–1)2.0 × 10–4[25]20[26]10[27]10[27]
    缺陷态密度 Nt/cm–31.0 × 1013[25]2.5 × 1013[26]1.0 × 1015[27]1.0 × 1015[27]
    导带有效密度 Nc/cm–32.2 × 1018[25]2.2 × 1018[26]2.2 × 1018[28]2.2 × 1018[28]
    价带有效密度 Nv/cm–31.8 × 1019[25]1.8 × 1019[26]1.8 × 1019[28]1.8 × 1019[28]
    下载: 导出CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Akkerman Q A, Raino G, Kovalenko M V, Manna L 2018 Nat. Mater 17 394Google Scholar

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [4]

    Mazzarella L, Lin Y H, Kirner S, et al. 2019 Adv. Energy Mater. 9 14Google Scholar

    [5]

    Kim M, Jeong J, Lu H Z, et al. 2022 Science 375 302Google Scholar

    [6]

    Jena A K, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar

    [7]

    Kim J Y, Lee J W, Jung H S, Shin H, Park N G 2020 Chem. Rev. 120 7867Google Scholar

    [8]

    Ma S, Cai M L, Cheng T, Ding X H, Shi X Q, Alsaedi A, Hayat T, Ding Y, Tan Z, Dai S Y 2018 Sci. China Mater. 61 1257Google Scholar

    [9]

    Shi P, Ding Y, Liu C, Yang Y, Arain Z, Cai M, Ren Y, Hayat T, Alsaedi A, Dai S 2019 Sci. China Mater. 62 1846Google Scholar

    [10]

    Shi X Q, Chen J Q, Wu Y H, Cai M L, Shi P J, Ma S, Liu C, Liu X P, Dai S Y 2020 ACS Sustain. Chem. Eng. 8 4267Google Scholar

    [11]

    Bi D Q, Yi C Y, Luo J S, Decoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Gratzel M 2016 Nat. Energy 1 16142Google Scholar

    [12]

    Shubham, Raghvendra, Pathak C, Pandey S K 2020 IEEE Trans. Electro. Dev. 67 2837Google Scholar

    [13]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081Google Scholar

    [14]

    Zheng X P, Chen B, Dai J, Fang Y J, Bai Y, Lin Y Z, Wei H T, Zeng X C, Huang J S 2017 Nat. Energy 2 17102Google Scholar

    [15]

    Kim G W, Kang G, Kim J, Lee G Y, Kim H I, Pyeon L, Lee J, Park T 2016 Energ. Environ. Sci. 9 2326Google Scholar

    [16]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [17]

    甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流 2021 物理学报 70 038801Google Scholar

    Gan Y J, Jiang Q B, Qin B Y, Bi X G, Li Q L 2021 Acta Phys. Sin. 70 038801Google Scholar

    [18]

    Gao Y, Wu Y, Liu Y, Chen C, Shen X, Bai X, Shi Z, Yu W W, Dai Q, Zhang Y 2019 Solar RRL 3 1900314Google Scholar

    [19]

    Li N, Yan J, Ai Y, Jiang E, Lin L, Shou C, Yan B, Sheng J, Ye J 2019 Sci. China Mater. 63 207Google Scholar

    [20]

    Shi X, Tao Y, Li Z, Peng H, Cai M, Liu X, Zhang Z, Dai S 2021 Sci. China Mater. 64 1858Google Scholar

    [21]

    丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 物理学报 64 038802Google Scholar

    Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802Google Scholar

    [22]

    Wang D, Wu C, Luo W, Guo X, Qu B, Xiao L, Chen Z 2018 Acs Appl. Energ. Mater. 1 2215Google Scholar

    [23]

    Wang Y, Duan C, Zhang X, Rujisamphan N, Liu Y, Li Y, Yuan J, Ma W 2020 ACS Appl. Mater. Inter. 12 31659Google Scholar

    [24]

    Ren X, Wang Z, Sha W E I, Choy W C H 2017 ACS Photonics 4 934Google Scholar

    [25]

    Singh N, Agarwal A, Agarwal M 2021 Superlattice. Microst 149 106750Google Scholar

    [26]

    Azri F, Meftah A, Sengouga N, Meftah A 2019 Solar Energy 181 372Google Scholar

    [27]

    Ahmed S, Jannat F, Khan M A K, Alim M A 2021 Optik 225 165765Google Scholar

    [28]

    Tan K, Lin P, Wang G, Liu Y, Xu Z C, Lin Y X 2016 Solid State Electron 126 75Google Scholar

    [29]

    Zhao P, Lin Z H, Wang J P, Yue M, Su J, Zhang J C, Chang J J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504Google Scholar

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [3] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [4] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [5] 徐洁, 冯泽华, 刘冰野, 朱欣怡, 代锦飞, 董化, 吴朝新. 聚合物内封装层辅助空气中钙钛矿模组器件制备及其光电特性. 物理学报, 2023, 72(24): 248802. doi: 10.7498/aps.72.20231055
    [6] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [7] 孙盟杰, 何志群, 郑毅帆, 邵宇川. EDTA/SnO2双层复合电子传输层在钙钛矿电池中的应用. 物理学报, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [8] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [9] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [10] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [11] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [12] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [13] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [14] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [16] 张晓宇, 张丽平, 马忠权, 刘正新. 硅锗量子阱结构在硅异质结太阳电池中应用的数值模拟. 物理学报, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [19] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [20] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
计量
  • 文章访问数:  6785
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-17
  • 修回日期:  2022-06-01
  • 上网日期:  2022-10-03
  • 刊出日期:  2022-10-20

/

返回文章
返回