搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响

刘毅 徐征 赵谡玲 乔泊 李杨 秦梓伦 朱友勤

引用本文:
Citation:

双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响

刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤

Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance

Liu Yi, Xu Zheng, Zhao Su-Ling, Qiao Bo, Li Yang, Qin Zi-Lun, Zhu You-Qin
PDF
导出引用
  • 有机无机复合钙钛矿材料被证明是非常出色的光伏材料,目前主要通过优化钙钛矿材料的结晶和形貌来提高钙钛矿太阳能电池的效率.而对于电荷传输层,特别是p-i-n结构中电子传输层的研究相对较少.因此,本文制备了结构为ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Al的钙钛矿太阳能电池通过在电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯(PCBM)中添加聚苯乙烯(PS)和1,8-二碘辛烷(DIO)使得钙钛矿太阳能电池的光电转换效率从10.8%提升到了12.5%.分析了性能提高的原因主要是:1)添加剂PS的加入提升了PCBM的黏度,从而形成了质量更高、更平滑的膜层,这有利于抑制电子和空穴在钙钛矿层和电子传输层之间的复合;2)添加剂DIO的加入改善了电子传输层的形貌,有利于电荷的分离、传输和收集.研究结果表明用成本较低的添加剂处理可以改善电子传输层的形貌和膜层的质量达到了改善电荷传输特性的效果提升了钙钛矿太阳能电池的效率为提升钙钛矿太阳能电池性能提供了一条可行的路径.
    The organic-inorganic metal halide perovskite materials have excellent optical and electrical properties such as high absorption coefficient, high carrier mobility, long carrier lifetime, tunable bandgap, facile fabrication process, etc. Owing to the above excellent properties, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has increased significantly from 3.8% to 22.1% in the last few years. The PSCs have attracted intensive interest in recent years and show great commercial potential. Previous approaches to increasing the PCE of PSCs have focused on the optimization of the morphology of perovskite film. However, there are relatively few studies on the electron transport layer (ETL) in the typical p-i-n sandwiched structure. In this work, the PCE of PSCs with device structure of ITO/PEDTO: PSS/CH3NH3PbI3/PCBM/Al is improved from 10.8% to 12.5% by using polystyrene (PS) and 1,8-diiodooctane (DIO) as binary additives during the deposition of phenyl-C61-butyric acid methyl ester (PCBM) layer. With the addition of PS, a highly smooth and uniform PCBM ETL is formed due to the increase of viscosity. The morphologies of the PCBM films prepared with and without PS are analyzed using an atomic force microscope in the tapping mode. The root-mean-square surface roughness decreases from 1.270 to 0.975 nm with the addition of PS increasing, which is more effective in preventing electron and hole from recombining at the interface between the perovskite layer and the top electrode. Addition of DIO improves the morphology of PCBM, which plays an important role in charge dissociation, charge transportation, and charge collection. From the time-resolved photoluminescence decay curves of ITO/CH3NH3PbI3/PCBM (with different additives), it is clear to conclude that the exciton dissociation between the perovskite layer and PCBM layer is faster and faster. Electrons and holes can be quickly separated, indicating that charge transport performances of electron transport layer with the addition DIO turn better. The addition of two additives is a simple and low-cost approach to improving the morphology of the electron transport layer, which provides a path-to the further improvement of the performance of p-i-n PSCs.
      通信作者: 徐征, zhengxu@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575019,51272022,11474018)、教育部博士点基金(批准号:20130009130001)、国家重点研发计划(批准号:2016YFB0401302)和中央高校基本科研业务费(批准号:2016JBM066)资助的课题.
      Corresponding author: Xu Zheng, zhengxu@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575019, 51272022, 11474018), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130009130001), the National Key R D Program, China (Grant No. 2016YFB0401302), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2016JBM066).
    [1]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang J S 2014 Adv. Mater. 26 6503

    [2]

    Takahashi Y, Hasegawa H, Takahashi Y, Inabe T 2013 J. Solid State Chem. 205 39

    [3]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [4]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623

    [5]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506

    [6]

    Kazim S, Nazeeruddin M K, Gratzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2812

    [7]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [8]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [9]

    You J, Hong Z, Yang Y M, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS. Nano 8 1674

    [10]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158

    [11]

    You J, Yang Y M, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G, Yang Y 2014 Appl. Phys. Lett. 105 183902

    [12]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Jen A K 2014 Adv. Mater. 26 3748

    [13]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [14]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [15]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [16]

    Shao Y C, Yuan Y B, Huang J S 2016 Nature Energy 1 15001

    [17]

    Liu Z H, Lee E C 2015 Organic Electronics. Lett. 24 101

    [18]

    Huang Y, Wen W, Mukherjee S, Ade H, Kramer E J, Bazan G C 2014 Adv. Mater. 26 4168

    [19]

    Wu C C, Wu C I, Sturm J C, Kahn A 1997 Appl. Phys. Lett. 70 1348

    [20]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environmental Science 7 2642

    [21]

    Bai Y, Yu H, Zhu Z L, Jiang K, Zhang T, Zhao N, Yang S H, Yan H 2015 Journal of Materials Chemistry A: Sci. 3 9098

    [22]

    Lakowicz L R 1999 Principles of Fluorescence Spectroscopy (New York: Kluwert Academic/Plenum Pyblishers)

    [23]

    Kumar A, Li G, Hong Z, Yang Y 2009 Nanotechnology 20 165202

    [24]

    Nie W Y, Tsai H H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D 2015 Science 347 522

    [25]

    Xie F X, Zhang D, Su H, Ren X, Wong K S, Grtzel M, Choy W C H 2015 ACS Nano 9 639

    [26]

    Bi C, Wang Q, Shao Y C, Yuan Y B, Xiao Z G, Huang J S 2015 Nat. Commun. 6 7747

    [27]

    Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C Z, Friend R H, Jen A K Y, Snaith H J 2014 ACS Nano 8 12701

    [28]

    Zuo L, Gu Z, Ye T, Fu W, Wu G, Li H, Chen H 2015 J. Am. Chem. Soc. 137 2674

  • [1]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang J S 2014 Adv. Mater. 26 6503

    [2]

    Takahashi Y, Hasegawa H, Takahashi Y, Inabe T 2013 J. Solid State Chem. 205 39

    [3]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [4]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623

    [5]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506

    [6]

    Kazim S, Nazeeruddin M K, Gratzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2812

    [7]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [8]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [9]

    You J, Hong Z, Yang Y M, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS. Nano 8 1674

    [10]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158

    [11]

    You J, Yang Y M, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G, Yang Y 2014 Appl. Phys. Lett. 105 183902

    [12]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Jen A K 2014 Adv. Mater. 26 3748

    [13]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [14]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [15]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [16]

    Shao Y C, Yuan Y B, Huang J S 2016 Nature Energy 1 15001

    [17]

    Liu Z H, Lee E C 2015 Organic Electronics. Lett. 24 101

    [18]

    Huang Y, Wen W, Mukherjee S, Ade H, Kramer E J, Bazan G C 2014 Adv. Mater. 26 4168

    [19]

    Wu C C, Wu C I, Sturm J C, Kahn A 1997 Appl. Phys. Lett. 70 1348

    [20]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environmental Science 7 2642

    [21]

    Bai Y, Yu H, Zhu Z L, Jiang K, Zhang T, Zhao N, Yang S H, Yan H 2015 Journal of Materials Chemistry A: Sci. 3 9098

    [22]

    Lakowicz L R 1999 Principles of Fluorescence Spectroscopy (New York: Kluwert Academic/Plenum Pyblishers)

    [23]

    Kumar A, Li G, Hong Z, Yang Y 2009 Nanotechnology 20 165202

    [24]

    Nie W Y, Tsai H H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D 2015 Science 347 522

    [25]

    Xie F X, Zhang D, Su H, Ren X, Wong K S, Grtzel M, Choy W C H 2015 ACS Nano 9 639

    [26]

    Bi C, Wang Q, Shao Y C, Yuan Y B, Xiao Z G, Huang J S 2015 Nat. Commun. 6 7747

    [27]

    Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C Z, Friend R H, Jen A K Y, Snaith H J 2014 ACS Nano 8 12701

    [28]

    Zuo L, Gu Z, Ye T, Fu W, Wu G, Li H, Chen H 2015 J. Am. Chem. Soc. 137 2674

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 徐洁, 冯泽华, 刘冰野, 朱欣怡, 代锦飞, 董化, 吴朝新. 聚合物内封装层辅助空气中钙钛矿模组器件制备及其光电特性. 物理学报, 2023, 72(24): 248802. doi: 10.7498/aps.72.20231055
    [3] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [4] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [5] 孙盟杰, 何志群, 郑毅帆, 邵宇川. EDTA/SnO2双层复合电子传输层在钙钛矿电池中的应用. 物理学报, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [6] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [7] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [8] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211344
    [9] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [10] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流. 锡基钙钛矿太阳能电池载流子传输层的探讨. 物理学报, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [11] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [12] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [13] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [14] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性. 物理学报, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [15] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [16] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [17] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [18] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] 刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢. 氧化锌锡作为电子传输层的量子点发光二极管. 物理学报, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [20] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
计量
  • 文章访问数:  5610
  • PDF下载量:  327
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-08
  • 修回日期:  2017-03-13
  • 刊出日期:  2017-06-05

/

返回文章
返回