搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温制备SnO2电子传输层用于钙钛矿太阳能电池

罗媛 朱从潭 马书鹏 朱刘 郭学益 杨英

引用本文:
Citation:

低温制备SnO2电子传输层用于钙钛矿太阳能电池

罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英

Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells

Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying
PDF
HTML
导出引用
  • SnO2具有光稳定性优异、可低温溶液制备等优点被视为电子传输层的优异材料之一, 广泛应用于高效稳定的平面异质结钙钛矿太阳能电池. 本文在低温(150 ℃)下采用旋涂工艺制备SnO2电子传输层, 探究了SnO2前驱体溶液不同浓度(SnO2质量分数为2.5%—10.0%)下制备的SnO2电子传输层对钙钛矿太阳能电池性能的影响. 通过对SnO2薄膜进行扫描电子显微镜(SEM)、紫外-可见光(UV-Vis)吸收光谱和透射光谱分析, 发现基底的覆盖率、透光率和SnO2薄膜的带隙随SnO2前驱液浓度的增加而增大; 通过对SnO2/钙钛矿(MAPbI3)薄膜进行SEM、UV-Vis、X-射线衍射(XRD)、稳态光致发光(PL)光谱分析, 发现SnO2胶体分散液浓度为7.5%制备的SnO2层上沉积的MAPbI3的粒径最大, 结晶度最好, 具有更有效的电荷提取和传输能力; 通过对钙钛矿太阳能电池进行电化学交流阻抗(EIS)、外量子效率(EQE)分析, 发现质量分数为7.5%制备的器件具有最小的传输电阻和最佳的光电转换能力, 且获得了15.82%的光电转换效率, 在环境空气湿度(25±5) ℃, RH>70%, 无封装的条件下储存600 h后仍保持初始效率的92%. 同时, 采用浓度优化后的SnO2前驱液制备了柔性器件, 获得了13.12%的光电转换效率, 且在(30±5) ℃, RH>70%的空气环境下储存84天后仍保持初始效率的48%, 在弯曲循环1000次 (弯曲半径为3 mm)后, 仍保留了初始效率的78%. 这为提高柔性钙钛矿太阳能电池性能奠定了基础.
    SnO2 has the advantages of excellent photostability and can be prepared at low-temperature below 200 ℃. It is regarded as one of the excellent materials for the electron transport layer, and widely used in efficient and stable planar heterojunction perovskite solar cells. In this work, the low-cost, dense and uniform SnO2 electron transport layer is prepared by spin coating at low temperature (150 ℃) for perovskite solar cells with a structure of FTO/SnO2/CH3NH3PbI3 (MAPbI3)/Spiro-OMeTAD/Au. The crystallization and photoelectric properties of SnO2 electron transport layers prepared at different concentrations (2.5%–10%) at 150 ℃, and the influences of SnO2 electron transport layers on the formation of perovskite films and the performances of perovskite solar cells are discussed. By analyzing the scanning electron microscope (SEM), ultraviolet-visible light absorption spectrum (UV-Vis) and transmission spectrum of the SnO2 film, it is found that the coverage and light transmittance of the substrate and band gap of the SnO2 film increase as the SnO2 content increases, while the absorbance decreases. By analyzing the SEM, UV-Vis, X-ray diffraction (XRD) and steady-state photoluminescence spectrum (PL) analysis of the SnO2/MAPbI3 thin film, it is found that the MAPbI3 deposited on the SnO2 layer with a concentration of 7.5% is uniform and pinhole-free, has the largest particle size and the best crystallinity, as well as more effective charge extraction capability and transport capability. By analyzing the electrochemical impedance (EIS) and external quantum efficiency (EQE) of the device, the SnO2 electron transport layer with a concentration of 7.5% has better interface contact and lower interface resistance, which is beneficial to reducing the recombination of carriers and improving the photoelectric conversion capability, The perovskite solar cells based on SnO2 layer prepared with a concentration of 7.5% reaches a photoelectric conversion efficiency of 15.82% (Voc = 1.06 V, Jsc = 21.62 mA/cm2, FF = 69.40%), After storing for 600 h in ambient air ((25±5) ℃, RH>70%) without encapsulation, its efficiency remains 92% of the initial efficiency. At the same time, we prepare flexible devices on flexible substrates (TIO/PEN) by using SnO2 precursor with a concentration of 7.5%, which exhibits good photovoltaic performance and achieves a photoelectric conversion efficiency of 13.12%, and storage time for 84 d in ambient air ((30±5) ℃, RH>70%) without encapsulation, its efficiency remains 48% of the initial efficiency. The PCE retains 78% of the initial efficiency after 1000 bending cycles with a bending radius of 3 mm. The study of optimizing the concentration of SnO2 has laid a foundation for improving the performance of flexible perovskite solar cells.
      通信作者: 杨英, muyicaoyang@csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61774169)、清远市创新创业团队项目(批准号: 2018001)、广东省科技计划(批准号: 2018B030323010)和中南大学研究生自主探索创新项目(批准号: 2021zzts0612)资助的课题
      Corresponding author: Yang Ying, muyicaoyang@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61774169), the Qingyuan Innovation and Entrepreneurship Research Team Project, China (Grant No. 2018001), the Guangdong Science and Technology Planning Project, China (Grant No. 2018B030323010), and the Central South University Postgraduate Independent Exploration and Innovation Project, China (Grant No. 2021zzts0612)
    [1]

    Bahadur J, Ghahremani A H, Martin B, Pishgar S, Druffel T, Sunkara M K, Pal K 2019 J. Mater. Sci- Mater. Electron. 30 18452Google Scholar

    [2]

    Du J H, Feng L P, Guo X, Huang X P, Lin Z H, Su J, Hu Z S, Zhang J C, Chang J J, Hao Y 2020 J. Power Sources 455 227974

    [3]

    Zheng S Z, Wang G P, Liu T F, Lou L Y, Xiao S, Yang S H 2019 Sci. China-Chem. 62 800Google Scholar

    [4]

    Chan S H, Chang Y H, Wu M C 2019 Front. Mater. 6 57Google Scholar

    [5]

    Yi H, Duan L, Haque F, Bing J, Zheng J, Yang Y, Mo A C H, Zhang Y, Xu C, Conibeer G, Uddin A 2020 J. Power Sources 466 228320Google Scholar

    [6]

    National Renewable Energy Laboratory. Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html, 2022

    [7]

    Zhen C, Wu T T, Chen R Z, Wang L Z, Liu G, Cheng H M 2019 ACS Sustain. Chem. Eng. 7 4586Google Scholar

    [8]

    Tan H R, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [9]

    Kim M R, Choi H W, Bark C W 2020 J. Nanosci. Nanotechnol. 20 5491Google Scholar

    [10]

    Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W 2020 Adv. Mater. 32 1906374Google Scholar

    [11]

    Yi J, Zhuang J, Liu X C, Wang H Y, Ma Z, Huang D J, Guo Z L, Li H M 2020 J. Alloys Compd. 830 154710

    [12]

    杨英, 林飞宇, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益 2020 化学学报 78 217Google Scholar

    Yang Y, Lin F Y, Zhu C T, Chen T, Ma S P, Luo Y, Zhu L, Guo X Y 2020 Acta Chim. Sin. 78 217Google Scholar

    [13]

    朱从潭, 杨英, 赵北凯, 林飞宇, 罗媛, 马书鹏, 朱刘, 郭学益 2020 化学学报 78 1102Google Scholar

    Zhu C T, Yang Y, Zhao B K, Lin F Y, Luo Y, Ma S P, Zhu L, Guo X Y 2020 Acta Chim. Sin. 78 1102Google Scholar

    [14]

    杨英, 朱从潭, 林飞宇, 陈甜, 潘德群, 郭学益 2019 化学学报 77 964Google Scholar

    Yang Y, Zhu C T, Lin F Y, Chen T, Pan D Q, Guo X Y 2019 Acta Chim. Sin. 77 964Google Scholar

    [15]

    Liu Z, Wu S, Yang X, Zhou Y, Jin J, Sun J, Zhao L, Wang S 2021 Mater. Sci. Semicon. Process 123 105511Google Scholar

    [16]

    Deng K, Chen Q, Li L 2020 Adv. Funct. Mater. 30 2004209Google Scholar

    [17]

    Xue R, Zhou X, Peng S, Xu P, Wang S, Xu C, Zeng W, Xiong Y, Liang D 2020 ACS Sustain. Chem. Eng. 8 10714

    [18]

    Jung E H, Chen B, Bertens K, Vafaie M, Teale S, Proppe A, Hou Y, Zhu T, Zheng C, Sargent E H 2020 ACS Energy Lett. 5 2796Google Scholar

    [19]

    Xu H Y, Hu Z Y, Wang Y Y, Yang C, Gao C, Zhang H C, Zhang J, Zhu Y J 2020 Nanotechnology 31 315205

    [20]

    Jinbiao Jia J D, Jihuai Wu, Haoming Wei, Bingqiang Cao 2020 J. Alloys Compd. 844 156032Google Scholar

    [21]

    Xie H X, Yin X T, Chen P, Liu J, Yang C H, Que W X, Wang G F 2019 Mater. Lett. 234 311Google Scholar

    [22]

    Noh M F M, Arzaee N A, Safaei J, Mohamed N A, Kim H P, Yusoff A R M, Jang J, Teridi M A M 2019 J. Alloys Compd. 773 997Google Scholar

    [23]

    Méndez P F, Muhammed S K M, Barea E M, Masi S, Mora-Sero I 2019 Sol. RRL 3 1900191

    [24]

    Liu H R, Chen Z L, Wang H B, Ye F H, Ma J J, Zheng X L, Gui P B, Xiong L B, Wen J, Fang G J 2019 J. Mater. Chem. A. 7 10636Google Scholar

    [25]

    Liu C, Zhang L Z, Zhou X Y, Gao J S, Chen W, Wang X Z, Xu B M 2019 Adv. Funct. Mater. 29 1807604Google Scholar

    [26]

    Chen Y C, Meng Q, Zhang L R, Han C B, Gao H L, Zhang Y Z, Yan H 2019 J. Energy Chem. 35 144Google Scholar

    [27]

    Song J X, Zheng E Q, Bian J, Wang X F, Tian W J, Sanehira Y, Miyasaka T 2015 J. Mater. Chem. A 3 10837Google Scholar

    [28]

    Zhang W Y, Li Y C, Liu X, Tang D Y, Li X, Yuan X 2020 Chem. Eng. J. 379 122298

    [29]

    Park M, Kim J Y, Son H J, Lee C H, Jang S S, Ko M J 2016 Nano Energy. 26 208Google Scholar

    [30]

    Zhong M Y, Liang Y Q, Zhang J Q, Wei Z X, Li Q, Xu D S 2019 J. Mater. Chem. A. 7 6659Google Scholar

    [31]

    Chen C, Jiang Y, Guo J L, Wu X Y, Zhang W H, Wu S J, Gao X S, Hu X W, Wang Q M, Zhou G F, Chen Y W, Liu J M, Kempa K, Gao J W 2019 Adv. Funct. Mater. 29 1900557Google Scholar

    [32]

    陈甜, 杨英, 赵婉玉, 潘德群, 朱从潭, 林飞宇, 郭学益 2019 化学学报 77 447Google Scholar

    Chen T, Yang Y, Zhao W Y, Pan D Q, Zhu C T, Lin F Y, Guo X Y 2019 Acta Chim. Sin. 77 447Google Scholar

    [33]

    Zhu C T, Yang Y, Lin F Y, Luo Y, Ma S P, Zhu L, Guo X Y 2021 Rare Met. 40 2402Google Scholar

    [34]

    林飞宇, 杨英, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益 2021 物理化学学报 37 2005007Google Scholar

    Lin F Y, Yang Y, Zhu C T, Chen T, Ma S P, Luo Y, Zhu L, Guo X Y 2021 Acta Phys. Chim. Sin. 37 2005007Google Scholar

    [35]

    Duan J, Xiong Q, Feng B, Xu Y, Zhang J, Wang H 2017 Appl. Surf. Sci. 391 677Google Scholar

    [36]

    Zhou W, Liu Y Y, Yang Y Z, Wu P 2014 J. Phys. Chem. C. 118 6448Google Scholar

    [37]

    Xiong L B, Qin M C, Yang G, Guo Y X, Lei H W, Liu Q, Ke W J, Tao H, Qin P L, Li S Z, Yu H Q, Fang G J 2016 J. Mater. Chem. A. 4 8374Google Scholar

    [38]

    Huang L, Sun X X, Li C, Xu J, Xu R, Du Y Y, Ni J, Cai H K, Li J, Hu Z Y, Jianjun J J 2017 ACS Appl. Mater. Interfaces. 9 21909Google Scholar

    [39]

    Wang S, Sang H, Jiang Y, Wang Y, Xiong Y, Yu Y, He R, Chen B, Zhao X, Liu Y 2021 ACS Appl. Mater. Interfaces. 13 48555Google Scholar

    [40]

    Kouhnavard M, Niedzwiedzki D M, Biswas P 2020 Int. J. Energy Res. 44 11361

    [41]

    Gong W, Guo H, Zhang H, Yang J, Chen H, Wang L, Hao F, Niu X 2020 J. Mater. Chem. C. 8 11638Google Scholar

    [42]

    Fru J N, Nombona N, Diale M 2020 Vacuum 182 109727

    [43]

    Huang X P, Du J H, Guo X, Lin Z H, Ma J, Su J, Feng L P, Zhang C F, Zhang J C, Chang J J, Hao Y 2020 Sol. RRL 4 1900336

    [44]

    Wan J S, Tao L, Wang Q, Zhang K, Xie J, Zhang J, Wang H 2021 Chem. Eng. J. 403 126435

    [45]

    Wang H B, Liu H G, Ye F H, Chen Z L, Ma J J, Liang J W, Zheng X L, Tao C, Fang G J 2021 J. Power Sources 481 229160

  • 图 1  不同浓度制备的FTO/SnO2薄膜 SEM图 (a) 2.50%, (b) 3.00%, (c) 3.75%, (d) 5.00%, (e) 7.50%, (f) 10.0%; (g), (h) EDS图(插图为对应的元素重量和原子百分比)

    Fig. 1.  FTO/SnO2 films prepared with different weight concentrations: SEM image (a) 2.50%, (b) 3.00%, (c) 3.75%, (d) 5.00%, (e) 7.50%, (f) 10.0%; (g), (h) EDS image (The inset indicating the weight and atomic percentage).

    图 2  不同浓度制备的SnO2薄膜 (a)UV-Vis光谱图;(b)透射光谱图(插图为SnO2薄膜的Tauc图)

    Fig. 2.  SnO2 films with different weight concentrations: (a) UV-Vis spectra; (b) transmittance spectra (The inset is Tauc diagram of SnO2 films).

    图 3  不同浓度制备的SnO2/MAPbI3薄膜 SEM表面形貌 (a) 2.50%, (b) 3.00%, (c) 3.75%, (d) 5.00%, (e) 7.50%, (f) 10.0%; (g) SEM截面形貌, 浓度为7.50%

    Fig. 3.  SnO2/MAPbI3 films prepared with different weight concentrations: SEM surface morphologies (a) 2.50%, (b) 3.00%, (c) 3.75%, (d) 5.00%, (e) 7.50%, (f) 10.0%; (g) SEM morphology of the cross-section for weight concentration of 7.50%.

    图 4  不同浓度制备的SnO2/MAPbI3薄膜 (a) UV-Vis吸收光谱; (b) XRD图; (c) PL图; (d)归一化的PL图

    Fig. 4.  SnO2/MAPbI3 films with different weight concentration of SnO2: (a) UV-Vis absorption spectra; (b) XRD pattern; (c) PL spectra; (d) normalized PL spectra.

    图 5  不同浓度制备的SnO2电子传输层的PSC (a)结构图; (b) J-V曲线图; (c) Nyquist图; (d) EQE图

    Fig. 5.  PSC based on SnO2 electron transport layers prepared with different weight concentrations: (a) Diagram of device structures; (b) J-V curves; (c) Nyquist plots; (d) EQE curves.

    图 6  不同浓度制备SnO2 电子传输层的PSC光伏参数统计图 (a) 电流密度; (b)开路电压; (c)填充因子; (d)光电转换效率

    Fig. 6.  Statistical of PSC photovoltaic parameters based on SnO2 electron transport layers prepared with different concentrations: (a) Current density; (b) open circuit voltage; (c) fill factor; (d) photoelectric conversion efficiency.

    图 7  浓度为7.5%的SnO2电子传输层制备的PSC的稳定性结果

    Fig. 7.  Stability test results of PSC based on SnO2 electron transport layers prepared with weight concentration of 7.5%.

    图 8  (a) 150 ℃, (c) 450 ℃退火FTO/SnO2薄膜的SEM图; (b) 150 ℃, (d) 450 ℃退火SnO2/MAPbI3薄膜的SEM图; 不同温度下退火SnO2薄膜(e) UV-Vis吸收光谱, (f) Tauc图, (g)透射光谱图; 不同温度下退火SnO2/MAPbI3薄膜(h) UV-Vis吸收光谱, (i) XRD图, (j) PL图; PSC器件 (k) J-V曲线, (l) EQE曲线

    Fig. 8.  SEM images of FTO/SnO2 films annealed at (a) 150 ℃, (c) 450 ℃; SEM images of SnO2/MAPbI3 films annealed at (b) 150 ℃, (d) 450 ℃; SnO2 films annealed under different temperature: (e) UV-Vis absorption spectra, (f) Tauc diagram, (g) transmittance spectra; SnO2/MAPbI3 films annealed under different temperature: (h) UV-Vis absorption spectra, (i) XRD spectra, (j) PL spectra; PSC devices: (k) J-V curves; (l) EQE curves.

    图 9  SnO2电子传输层的柔性PSC (a) 不同浓度制备器件的J-V曲线; (b) r = 3 mm, 浓度为7.5%柔性器件的PCE演变; (c)浓度为7.5%柔性器件的稳定性

    Fig. 9.  Flexible PSC with SnO2 electron transport layers: (a) J-V curves of device prepared with different weight concentrations; (b) r = 3 mm, PCE evolution of flexible device with weight concentration of 7.5%; (c) stability results of flexible device with weight concentration of 7.5%.

    表 1  不同浓度下制备SnO2电子传输层的PSC光电性能参数

    Table 1.  Optoelectronic performance parameters of PSC based on SnO2 electron transport layers prepared with different concentrations.

    Concentration/%RsRtrJsc/(mA·cm–2)Voc/VFF/%PCE/%
    2.5036.89394.3020.801.0754.4912.12
    3.0048.19364.1020.441.0663.3213.65
    3.7543.46348.9020.401.1065.1114.56
    5.0042.51322.8020.381.0865.1814.31
    7.5046.47277.6021.621.0669.4015.82
    10.041.64321.3022.261.0267.4715.33
    下载: 导出CSV

    表 2  不同浓度下制备SnO2电子传输层的柔性器件光电性能参数

    Table 2.  Photovoltaic parameters of flexible device based on SnO2 layer prepared with different weight concentrations.

    Concentration/%Jsc/(mA·cm–2)Voc/VFF/%PCE/%
    2.5017.330.9457.009.26
    3.0017.330.9861.2510.32
    3.7518.391.0261.6211.37
    5.0018.601.0665.7913.00
    7.5018.441.0766.6513.12
    10.020.541.0362.2813.10
    下载: 导出CSV
  • [1]

    Bahadur J, Ghahremani A H, Martin B, Pishgar S, Druffel T, Sunkara M K, Pal K 2019 J. Mater. Sci- Mater. Electron. 30 18452Google Scholar

    [2]

    Du J H, Feng L P, Guo X, Huang X P, Lin Z H, Su J, Hu Z S, Zhang J C, Chang J J, Hao Y 2020 J. Power Sources 455 227974

    [3]

    Zheng S Z, Wang G P, Liu T F, Lou L Y, Xiao S, Yang S H 2019 Sci. China-Chem. 62 800Google Scholar

    [4]

    Chan S H, Chang Y H, Wu M C 2019 Front. Mater. 6 57Google Scholar

    [5]

    Yi H, Duan L, Haque F, Bing J, Zheng J, Yang Y, Mo A C H, Zhang Y, Xu C, Conibeer G, Uddin A 2020 J. Power Sources 466 228320Google Scholar

    [6]

    National Renewable Energy Laboratory. Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html, 2022

    [7]

    Zhen C, Wu T T, Chen R Z, Wang L Z, Liu G, Cheng H M 2019 ACS Sustain. Chem. Eng. 7 4586Google Scholar

    [8]

    Tan H R, Jain A, Voznyy O, Lan X Z, de Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [9]

    Kim M R, Choi H W, Bark C W 2020 J. Nanosci. Nanotechnol. 20 5491Google Scholar

    [10]

    Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W 2020 Adv. Mater. 32 1906374Google Scholar

    [11]

    Yi J, Zhuang J, Liu X C, Wang H Y, Ma Z, Huang D J, Guo Z L, Li H M 2020 J. Alloys Compd. 830 154710

    [12]

    杨英, 林飞宇, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益 2020 化学学报 78 217Google Scholar

    Yang Y, Lin F Y, Zhu C T, Chen T, Ma S P, Luo Y, Zhu L, Guo X Y 2020 Acta Chim. Sin. 78 217Google Scholar

    [13]

    朱从潭, 杨英, 赵北凯, 林飞宇, 罗媛, 马书鹏, 朱刘, 郭学益 2020 化学学报 78 1102Google Scholar

    Zhu C T, Yang Y, Zhao B K, Lin F Y, Luo Y, Ma S P, Zhu L, Guo X Y 2020 Acta Chim. Sin. 78 1102Google Scholar

    [14]

    杨英, 朱从潭, 林飞宇, 陈甜, 潘德群, 郭学益 2019 化学学报 77 964Google Scholar

    Yang Y, Zhu C T, Lin F Y, Chen T, Pan D Q, Guo X Y 2019 Acta Chim. Sin. 77 964Google Scholar

    [15]

    Liu Z, Wu S, Yang X, Zhou Y, Jin J, Sun J, Zhao L, Wang S 2021 Mater. Sci. Semicon. Process 123 105511Google Scholar

    [16]

    Deng K, Chen Q, Li L 2020 Adv. Funct. Mater. 30 2004209Google Scholar

    [17]

    Xue R, Zhou X, Peng S, Xu P, Wang S, Xu C, Zeng W, Xiong Y, Liang D 2020 ACS Sustain. Chem. Eng. 8 10714

    [18]

    Jung E H, Chen B, Bertens K, Vafaie M, Teale S, Proppe A, Hou Y, Zhu T, Zheng C, Sargent E H 2020 ACS Energy Lett. 5 2796Google Scholar

    [19]

    Xu H Y, Hu Z Y, Wang Y Y, Yang C, Gao C, Zhang H C, Zhang J, Zhu Y J 2020 Nanotechnology 31 315205

    [20]

    Jinbiao Jia J D, Jihuai Wu, Haoming Wei, Bingqiang Cao 2020 J. Alloys Compd. 844 156032Google Scholar

    [21]

    Xie H X, Yin X T, Chen P, Liu J, Yang C H, Que W X, Wang G F 2019 Mater. Lett. 234 311Google Scholar

    [22]

    Noh M F M, Arzaee N A, Safaei J, Mohamed N A, Kim H P, Yusoff A R M, Jang J, Teridi M A M 2019 J. Alloys Compd. 773 997Google Scholar

    [23]

    Méndez P F, Muhammed S K M, Barea E M, Masi S, Mora-Sero I 2019 Sol. RRL 3 1900191

    [24]

    Liu H R, Chen Z L, Wang H B, Ye F H, Ma J J, Zheng X L, Gui P B, Xiong L B, Wen J, Fang G J 2019 J. Mater. Chem. A. 7 10636Google Scholar

    [25]

    Liu C, Zhang L Z, Zhou X Y, Gao J S, Chen W, Wang X Z, Xu B M 2019 Adv. Funct. Mater. 29 1807604Google Scholar

    [26]

    Chen Y C, Meng Q, Zhang L R, Han C B, Gao H L, Zhang Y Z, Yan H 2019 J. Energy Chem. 35 144Google Scholar

    [27]

    Song J X, Zheng E Q, Bian J, Wang X F, Tian W J, Sanehira Y, Miyasaka T 2015 J. Mater. Chem. A 3 10837Google Scholar

    [28]

    Zhang W Y, Li Y C, Liu X, Tang D Y, Li X, Yuan X 2020 Chem. Eng. J. 379 122298

    [29]

    Park M, Kim J Y, Son H J, Lee C H, Jang S S, Ko M J 2016 Nano Energy. 26 208Google Scholar

    [30]

    Zhong M Y, Liang Y Q, Zhang J Q, Wei Z X, Li Q, Xu D S 2019 J. Mater. Chem. A. 7 6659Google Scholar

    [31]

    Chen C, Jiang Y, Guo J L, Wu X Y, Zhang W H, Wu S J, Gao X S, Hu X W, Wang Q M, Zhou G F, Chen Y W, Liu J M, Kempa K, Gao J W 2019 Adv. Funct. Mater. 29 1900557Google Scholar

    [32]

    陈甜, 杨英, 赵婉玉, 潘德群, 朱从潭, 林飞宇, 郭学益 2019 化学学报 77 447Google Scholar

    Chen T, Yang Y, Zhao W Y, Pan D Q, Zhu C T, Lin F Y, Guo X Y 2019 Acta Chim. Sin. 77 447Google Scholar

    [33]

    Zhu C T, Yang Y, Lin F Y, Luo Y, Ma S P, Zhu L, Guo X Y 2021 Rare Met. 40 2402Google Scholar

    [34]

    林飞宇, 杨英, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益 2021 物理化学学报 37 2005007Google Scholar

    Lin F Y, Yang Y, Zhu C T, Chen T, Ma S P, Luo Y, Zhu L, Guo X Y 2021 Acta Phys. Chim. Sin. 37 2005007Google Scholar

    [35]

    Duan J, Xiong Q, Feng B, Xu Y, Zhang J, Wang H 2017 Appl. Surf. Sci. 391 677Google Scholar

    [36]

    Zhou W, Liu Y Y, Yang Y Z, Wu P 2014 J. Phys. Chem. C. 118 6448Google Scholar

    [37]

    Xiong L B, Qin M C, Yang G, Guo Y X, Lei H W, Liu Q, Ke W J, Tao H, Qin P L, Li S Z, Yu H Q, Fang G J 2016 J. Mater. Chem. A. 4 8374Google Scholar

    [38]

    Huang L, Sun X X, Li C, Xu J, Xu R, Du Y Y, Ni J, Cai H K, Li J, Hu Z Y, Jianjun J J 2017 ACS Appl. Mater. Interfaces. 9 21909Google Scholar

    [39]

    Wang S, Sang H, Jiang Y, Wang Y, Xiong Y, Yu Y, He R, Chen B, Zhao X, Liu Y 2021 ACS Appl. Mater. Interfaces. 13 48555Google Scholar

    [40]

    Kouhnavard M, Niedzwiedzki D M, Biswas P 2020 Int. J. Energy Res. 44 11361

    [41]

    Gong W, Guo H, Zhang H, Yang J, Chen H, Wang L, Hao F, Niu X 2020 J. Mater. Chem. C. 8 11638Google Scholar

    [42]

    Fru J N, Nombona N, Diale M 2020 Vacuum 182 109727

    [43]

    Huang X P, Du J H, Guo X, Lin Z H, Ma J, Su J, Feng L P, Zhang C F, Zhang J C, Chang J J, Hao Y 2020 Sol. RRL 4 1900336

    [44]

    Wan J S, Tao L, Wang Q, Zhang K, Xie J, Zhang J, Wang H 2021 Chem. Eng. J. 403 126435

    [45]

    Wang H B, Liu H G, Ye F H, Chen Z L, Ma J J, Liang J W, Zheng X L, Tao C, Fang G J 2021 J. Power Sources 481 229160

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [4] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [5] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [6] 徐洁, 冯泽华, 刘冰野, 朱欣怡, 代锦飞, 董化, 吴朝新. 聚合物内封装层辅助空气中钙钛矿模组器件制备及其光电特性. 物理学报, 2023, 72(24): 248802. doi: 10.7498/aps.72.20231055
    [7] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [8] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] 孙盟杰, 何志群, 郑毅帆, 邵宇川. EDTA/SnO2双层复合电子传输层在钙钛矿电池中的应用. 物理学报, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [10] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [11] 王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟. 醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能. 物理学报, 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [12] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [13] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211344
    [14] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [15] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [16] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [17] 刘晓敏, 李亦回, 王兴涛, 赵一新. 有机铵盐表面稳定化CsPbI2Br全无机钙钛矿. 物理学报, 2019, 68(15): 158805. doi: 10.7498/aps.68.20190303
    [18] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [19] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [20] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
计量
  • 文章访问数:  9989
  • PDF下载量:  351
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 修回日期:  2022-01-08
  • 上网日期:  2022-03-04
  • 刊出日期:  2022-06-05

/

返回文章
返回