-
In 2009, organic-inorganic hybrid perovskite was first used as the light-absorbing material for solar cells. The rapidly increased efficiency, simple preparation process, and low cost have aroused widespread concern. The last five years have witnessed the increase of the power conversion efficiency in the organic-inorganic hybrid perovskite solar cells from 3.8% to 19.3%. At present, most researches focus on how to improve the photoelectric conversion efficiency rather than the stability. With the improvement of the power conversion efficiency, people have realized that the long-term stability is also one of the key issues in practical applications.The present preliminary researches indicate that there are two main factors connected with the stability. One is the stability of the perovskite materials, including thermal stability and humidity stability; the other is the stability of solar devices, mainly related to the design and optimization of devices' structure. To solve the problems of stability of perovskite materials, the main point is its crystal structure. Based on the tolerance factor related to the stability of the perovskite lattice structure, choosing a more suitable size of the moiety can reduce its sensitivity to humidity and improve its stability. To design the device structure, we should try to select a hydrophobic material to protect the perovskite materials from being affected by the surrounding environment. Researches have so far showed that by optimizing the design of the solar cell structure via combining the elements utilized and the bonding interface work, the stability of the hybrid perovskites solar cell is supposed to be entirely solved, and this will determine the practical process of hybrid perovskite photovoltaic materials. However, by the moment, the study on stability of perovskite solar cells is far from being sufficient.
-
Keywords:
- Hybrid perovskite /
- solar cell /
- stability
[1] Kojima A, Teshima k, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[2] Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643
[3] Burschka J, Pellet N, Moon S, Humphry-Bake R, Gao P, Nazeeruddin M, Grätzel 2013 Nature 499 316
[4] Liu M, Johnston M, Snaith H 2013 Nature 501 395
[5] Wang J M, Ball J, Barea E M, Abate A, Alexander-Webber, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H, Nicholas R J 2014 Nano Lett. 14 724
[6] Liu D, Kelly T L 2013 Nat. Photonics 8 133
[7] Wojciechowski K, Saliba M, Leijtens L, Abate A, Snaith H 2014 Energy Environ. Sci. 7 1142
[8] Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087
[9] Service R F 2014 Science 344 458
[10] Ma Y Z, Wang S F, Zheng L L, Lu Z L, Zhang D F, Bian Z Q, Huang C H, Xiao L X 2014 Chin. J. Chem. 32 957
[11] David B M 2001 J. Chem. Soc., Dalton Trans. 1 1
[12] Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019
[13] Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991
[14] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M,Snaith H J 2014 Energy Environ. Sci. 7 982
[15] Hanusch F C, Wiesenmayer E, Mankel E, Binek E, Angloher P, Fraunhofer C, Giesbrecht N, Feckl J M, Jaegermann W, Johrendt D, Bein T, Docampo P 2014 J. Phys. Chem. Lett. 5 2791
[16] Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Hemamala I. K 2014 Angew. Chem. 126 1
[17] Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122
[18] Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014 Nano Energy 7 80
[19] Koh T K, Fu K, Fang Y N, Chen S, Sum T C, Mathews N, Mhaisalkar S G, Boix P P, BaikieT 2014 J. Phys. Chem. C 118 16458
[20] Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585
[21] Huang L Y, Lambrecht W R L 2013 Physical Review B 88 165203
[22] Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, De Angelis D, Mosca R 2013 Chem. Mater. 25 4613
[23] Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344
[24] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz J M, Petrozza A, Snaith H J 2013 Science 342 341
[25] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764
[26] Mosconi E, Ronca E, Angelis F D 2014 J. Phys. Chem. Lett. 5 2619
[27] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316
[28] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395
[29] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885
[30] Bi D Q, Boschloo G, Schwarzmller S, Yang L, Johanssona E, Hagfeldt A 2013 Nanoscale 5 11686
[31] Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995
[32] Niu G D, Li W Z, Meng F Q, Wang L D, Dong H P, Qiu Y 2014 J. Mater. Chem. A 2 705
[33] Li W Z, Li J L, Wang L D, Niu G D, Gao R, Qiua Y 2013 J. Mater. Chem. A 1 11735
[34] Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico E, Kirkpatrik J, Ball J M, Docampo P, McPhersonc I, Snaith H J 2013 Phys. Chem. Chem. Phys. 15 2572
[35] Furube A, Katoh R, Hara K, Sato T, Murata S, Arakawa H, Tachiya M 2005 J. Phys. Chem. B 109 16406
[36] Cappel U B, Daeneke T 2012 Nano Lett. 12 4925
[37] Snaith H J, Grätzel M 2006 Appl. Phys. Lett. 89 262114
[38] Kwon Y S, Lim G C, Yun H J, Kim Y H, Park T 2014 Energy Environ. Sci. 7 1454
[39] Cai B, Xing Y D, Yang Z, Zhang W H, Qiu J S 2013 Energy Environ. Sci. 6 1480
[40] Zheng L L, Chung Y H, Ma Y Z, Zhang L P, Xiao L X, Chen Z J, Wang S F, Qu B, Gong Q H 2014 Chem. Commun. 50 11196
[41] Christians J A, Fung R C M, Kamat P V 2014 J. Am. Chem. Soc. 136 758
[42] Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295
[43] Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249
[44] Aharon S, Cohen B E, Etgar L 2014 J. Phys. Chem. C 118 17160
-
[1] Kojima A, Teshima k, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[2] Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643
[3] Burschka J, Pellet N, Moon S, Humphry-Bake R, Gao P, Nazeeruddin M, Grätzel 2013 Nature 499 316
[4] Liu M, Johnston M, Snaith H 2013 Nature 501 395
[5] Wang J M, Ball J, Barea E M, Abate A, Alexander-Webber, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H, Nicholas R J 2014 Nano Lett. 14 724
[6] Liu D, Kelly T L 2013 Nat. Photonics 8 133
[7] Wojciechowski K, Saliba M, Leijtens L, Abate A, Snaith H 2014 Energy Environ. Sci. 7 1142
[8] Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087
[9] Service R F 2014 Science 344 458
[10] Ma Y Z, Wang S F, Zheng L L, Lu Z L, Zhang D F, Bian Z Q, Huang C H, Xiao L X 2014 Chin. J. Chem. 32 957
[11] David B M 2001 J. Chem. Soc., Dalton Trans. 1 1
[12] Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019
[13] Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991
[14] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M,Snaith H J 2014 Energy Environ. Sci. 7 982
[15] Hanusch F C, Wiesenmayer E, Mankel E, Binek E, Angloher P, Fraunhofer C, Giesbrecht N, Feckl J M, Jaegermann W, Johrendt D, Bein T, Docampo P 2014 J. Phys. Chem. Lett. 5 2791
[16] Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Hemamala I. K 2014 Angew. Chem. 126 1
[17] Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122
[18] Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014 Nano Energy 7 80
[19] Koh T K, Fu K, Fang Y N, Chen S, Sum T C, Mathews N, Mhaisalkar S G, Boix P P, BaikieT 2014 J. Phys. Chem. C 118 16458
[20] Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585
[21] Huang L Y, Lambrecht W R L 2013 Physical Review B 88 165203
[22] Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, De Angelis D, Mosca R 2013 Chem. Mater. 25 4613
[23] Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344
[24] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz J M, Petrozza A, Snaith H J 2013 Science 342 341
[25] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764
[26] Mosconi E, Ronca E, Angelis F D 2014 J. Phys. Chem. Lett. 5 2619
[27] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316
[28] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395
[29] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885
[30] Bi D Q, Boschloo G, Schwarzmller S, Yang L, Johanssona E, Hagfeldt A 2013 Nanoscale 5 11686
[31] Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995
[32] Niu G D, Li W Z, Meng F Q, Wang L D, Dong H P, Qiu Y 2014 J. Mater. Chem. A 2 705
[33] Li W Z, Li J L, Wang L D, Niu G D, Gao R, Qiua Y 2013 J. Mater. Chem. A 1 11735
[34] Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico E, Kirkpatrik J, Ball J M, Docampo P, McPhersonc I, Snaith H J 2013 Phys. Chem. Chem. Phys. 15 2572
[35] Furube A, Katoh R, Hara K, Sato T, Murata S, Arakawa H, Tachiya M 2005 J. Phys. Chem. B 109 16406
[36] Cappel U B, Daeneke T 2012 Nano Lett. 12 4925
[37] Snaith H J, Grätzel M 2006 Appl. Phys. Lett. 89 262114
[38] Kwon Y S, Lim G C, Yun H J, Kim Y H, Park T 2014 Energy Environ. Sci. 7 1454
[39] Cai B, Xing Y D, Yang Z, Zhang W H, Qiu J S 2013 Energy Environ. Sci. 6 1480
[40] Zheng L L, Chung Y H, Ma Y Z, Zhang L P, Xiao L X, Chen Z J, Wang S F, Qu B, Gong Q H 2014 Chem. Commun. 50 11196
[41] Christians J A, Fung R C M, Kamat P V 2014 J. Am. Chem. Soc. 136 758
[42] Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295
[43] Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249
[44] Aharon S, Cohen B E, Etgar L 2014 J. Phys. Chem. C 118 17160
计量
- 文章访问数: 13814
- PDF下载量: 4244
- 被引次数: 0