搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

影响杂化钙钛矿太阳能电池稳定性的因素探讨

张丹霏 郑灵灵 马英壮 王树峰 卞祖强 黄春辉 龚旗煌 肖立新

引用本文:
Citation:

影响杂化钙钛矿太阳能电池稳定性的因素探讨

张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新

Factors influencing the stability of perovskite solar cells

Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin
PDF
导出引用
  • 自从2009年首次报道采用有机-无机杂化钙钛矿作为吸光材料用于太阳能电池以来, 钙钛矿太阳能电池效率的快速提升引起了人们广泛的关注, 这类电池同时具有制备工艺简单、成本低廉等优点, 引发了钙钛矿电池的研究热潮. 目前研究工作大多数集中在如何提高电池的光电转化效率, 但钙钛矿电池要真正实现产业化应用, 急需要解决材料及器件的稳定性问题. 本文探讨影响钙钛矿材料及器件的稳定性因素, 从温度及湿度等方面分析了材料的稳定性, 从传输材料及其界面问题讨论了器件的稳定性.
    In 2009, organic-inorganic hybrid perovskite was first used as the light-absorbing material for solar cells. The rapidly increased efficiency, simple preparation process, and low cost have aroused widespread concern. The last five years have witnessed the increase of the power conversion efficiency in the organic-inorganic hybrid perovskite solar cells from 3.8% to 19.3%. At present, most researches focus on how to improve the photoelectric conversion efficiency rather than the stability. With the improvement of the power conversion efficiency, people have realized that the long-term stability is also one of the key issues in practical applications.The present preliminary researches indicate that there are two main factors connected with the stability. One is the stability of the perovskite materials, including thermal stability and humidity stability; the other is the stability of solar devices, mainly related to the design and optimization of devices' structure. To solve the problems of stability of perovskite materials, the main point is its crystal structure. Based on the tolerance factor related to the stability of the perovskite lattice structure, choosing a more suitable size of the moiety can reduce its sensitivity to humidity and improve its stability. To design the device structure, we should try to select a hydrophobic material to protect the perovskite materials from being affected by the surrounding environment. Researches have so far showed that by optimizing the design of the solar cell structure via combining the elements utilized and the bonding interface work, the stability of the hybrid perovskites solar cell is supposed to be entirely solved, and this will determine the practical process of hybrid perovskite photovoltaic materials. However, by the moment, the study on stability of perovskite solar cells is far from being sufficient.
    • 基金项目: 国家自然科学基金(批准号: 61177020, 11121091)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61177020, 11121091).
    [1]

    Kojima A, Teshima k, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643

    [3]

    Burschka J, Pellet N, Moon S, Humphry-Bake R, Gao P, Nazeeruddin M, Grätzel 2013 Nature 499 316

    [4]

    Liu M, Johnston M, Snaith H 2013 Nature 501 395

    [5]

    Wang J M, Ball J, Barea E M, Abate A, Alexander-Webber, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H, Nicholas R J 2014 Nano Lett. 14 724

    [6]

    Liu D, Kelly T L 2013 Nat. Photonics 8 133

    [7]

    Wojciechowski K, Saliba M, Leijtens L, Abate A, Snaith H 2014 Energy Environ. Sci. 7 1142

    [8]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087

    [9]

    Service R F 2014 Science 344 458

    [10]

    Ma Y Z, Wang S F, Zheng L L, Lu Z L, Zhang D F, Bian Z Q, Huang C H, Xiao L X 2014 Chin. J. Chem. 32 957

    [11]

    David B M 2001 J. Chem. Soc., Dalton Trans. 1 1

    [12]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019

    [13]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991

    [14]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M,Snaith H J 2014 Energy Environ. Sci. 7 982

    [15]

    Hanusch F C, Wiesenmayer E, Mankel E, Binek E, Angloher P, Fraunhofer C, Giesbrecht N, Feckl J M, Jaegermann W, Johrendt D, Bein T, Docampo P 2014 J. Phys. Chem. Lett. 5 2791

    [16]

    Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Hemamala I. K 2014 Angew. Chem. 126 1

    [17]

    Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122

    [18]

    Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014 Nano Energy 7 80

    [19]

    Koh T K, Fu K, Fang Y N, Chen S, Sum T C, Mathews N, Mhaisalkar S G, Boix P P, BaikieT 2014 J. Phys. Chem. C 118 16458

    [20]

    Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585

    [21]

    Huang L Y, Lambrecht W R L 2013 Physical Review B 88 165203

    [22]

    Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, De Angelis D, Mosca R 2013 Chem. Mater. 25 4613

    [23]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [24]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz J M, Petrozza A, Snaith H J 2013 Science 342 341

    [25]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [26]

    Mosconi E, Ronca E, Angelis F D 2014 J. Phys. Chem. Lett. 5 2619

    [27]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [28]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [29]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885

    [30]

    Bi D Q, Boschloo G, Schwarzmller S, Yang L, Johanssona E, Hagfeldt A 2013 Nanoscale 5 11686

    [31]

    Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995

    [32]

    Niu G D, Li W Z, Meng F Q, Wang L D, Dong H P, Qiu Y 2014 J. Mater. Chem. A 2 705

    [33]

    Li W Z, Li J L, Wang L D, Niu G D, Gao R, Qiua Y 2013 J. Mater. Chem. A 1 11735

    [34]

    Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico E, Kirkpatrik J, Ball J M, Docampo P, McPhersonc I, Snaith H J 2013 Phys. Chem. Chem. Phys. 15 2572

    [35]

    Furube A, Katoh R, Hara K, Sato T, Murata S, Arakawa H, Tachiya M 2005 J. Phys. Chem. B 109 16406

    [36]

    Cappel U B, Daeneke T 2012 Nano Lett. 12 4925

    [37]

    Snaith H J, Grätzel M 2006 Appl. Phys. Lett. 89 262114

    [38]

    Kwon Y S, Lim G C, Yun H J, Kim Y H, Park T 2014 Energy Environ. Sci. 7 1454

    [39]

    Cai B, Xing Y D, Yang Z, Zhang W H, Qiu J S 2013 Energy Environ. Sci. 6 1480

    [40]

    Zheng L L, Chung Y H, Ma Y Z, Zhang L P, Xiao L X, Chen Z J, Wang S F, Qu B, Gong Q H 2014 Chem. Commun. 50 11196

    [41]

    Christians J A, Fung R C M, Kamat P V 2014 J. Am. Chem. Soc. 136 758

    [42]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295

    [43]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249

    [44]

    Aharon S, Cohen B E, Etgar L 2014 J. Phys. Chem. C 118 17160

  • [1]

    Kojima A, Teshima k, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643

    [3]

    Burschka J, Pellet N, Moon S, Humphry-Bake R, Gao P, Nazeeruddin M, Grätzel 2013 Nature 499 316

    [4]

    Liu M, Johnston M, Snaith H 2013 Nature 501 395

    [5]

    Wang J M, Ball J, Barea E M, Abate A, Alexander-Webber, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H, Nicholas R J 2014 Nano Lett. 14 724

    [6]

    Liu D, Kelly T L 2013 Nat. Photonics 8 133

    [7]

    Wojciechowski K, Saliba M, Leijtens L, Abate A, Snaith H 2014 Energy Environ. Sci. 7 1142

    [8]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grätzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087

    [9]

    Service R F 2014 Science 344 458

    [10]

    Ma Y Z, Wang S F, Zheng L L, Lu Z L, Zhang D F, Bian Z Q, Huang C H, Xiao L X 2014 Chin. J. Chem. 32 957

    [11]

    David B M 2001 J. Chem. Soc., Dalton Trans. 1 1

    [12]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019

    [13]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991

    [14]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M,Snaith H J 2014 Energy Environ. Sci. 7 982

    [15]

    Hanusch F C, Wiesenmayer E, Mankel E, Binek E, Angloher P, Fraunhofer C, Giesbrecht N, Feckl J M, Jaegermann W, Johrendt D, Bein T, Docampo P 2014 J. Phys. Chem. Lett. 5 2791

    [16]

    Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Hemamala I. K 2014 Angew. Chem. 126 1

    [17]

    Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122

    [18]

    Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014 Nano Energy 7 80

    [19]

    Koh T K, Fu K, Fang Y N, Chen S, Sum T C, Mathews N, Mhaisalkar S G, Boix P P, BaikieT 2014 J. Phys. Chem. C 118 16458

    [20]

    Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585

    [21]

    Huang L Y, Lambrecht W R L 2013 Physical Review B 88 165203

    [22]

    Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, De Angelis D, Mosca R 2013 Chem. Mater. 25 4613

    [23]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [24]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz J M, Petrozza A, Snaith H J 2013 Science 342 341

    [25]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [26]

    Mosconi E, Ronca E, Angelis F D 2014 J. Phys. Chem. Lett. 5 2619

    [27]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [28]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [29]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885

    [30]

    Bi D Q, Boschloo G, Schwarzmller S, Yang L, Johanssona E, Hagfeldt A 2013 Nanoscale 5 11686

    [31]

    Ito S, Tanaka S, Manabe K, Nishino H 2014 J. Phys. Chem. C 118 16995

    [32]

    Niu G D, Li W Z, Meng F Q, Wang L D, Dong H P, Qiu Y 2014 J. Mater. Chem. A 2 705

    [33]

    Li W Z, Li J L, Wang L D, Niu G D, Gao R, Qiua Y 2013 J. Mater. Chem. A 1 11735

    [34]

    Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico E, Kirkpatrik J, Ball J M, Docampo P, McPhersonc I, Snaith H J 2013 Phys. Chem. Chem. Phys. 15 2572

    [35]

    Furube A, Katoh R, Hara K, Sato T, Murata S, Arakawa H, Tachiya M 2005 J. Phys. Chem. B 109 16406

    [36]

    Cappel U B, Daeneke T 2012 Nano Lett. 12 4925

    [37]

    Snaith H J, Grätzel M 2006 Appl. Phys. Lett. 89 262114

    [38]

    Kwon Y S, Lim G C, Yun H J, Kim Y H, Park T 2014 Energy Environ. Sci. 7 1454

    [39]

    Cai B, Xing Y D, Yang Z, Zhang W H, Qiu J S 2013 Energy Environ. Sci. 6 1480

    [40]

    Zheng L L, Chung Y H, Ma Y Z, Zhang L P, Xiao L X, Chen Z J, Wang S F, Qu B, Gong Q H 2014 Chem. Commun. 50 11196

    [41]

    Christians J A, Fung R C M, Kamat P V 2014 J. Am. Chem. Soc. 136 758

    [42]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295

    [43]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249

    [44]

    Aharon S, Cohen B E, Etgar L 2014 J. Phys. Chem. C 118 17160

  • [1] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [2] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] 王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟. 醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能. 物理学报, 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [4] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [5] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [6] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [7] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [8] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [9] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [10] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [11] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [12] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [13] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [14] 张钰, 周欢萍. 有机-无机杂化钙钛矿材料的本征稳定性. 物理学报, 2019, 68(15): 158804. doi: 10.7498/aps.68.20190343
    [15] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [16] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [17] 柯少颖, 王茺, 潘涛, 何鹏, 杨杰, 杨宇. 渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计. 物理学报, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [18] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政. 一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池. 物理学报, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [19] 郑莹莹, 邓海涛, 万静, 李超荣. 有机-无机杂化钙钛矿自组装量子阱结构的能带调控和光电性能的研究. 物理学报, 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [20] 曹士英, 张志刚, 柴 路, 王清月. 钛宝石飞秒激光振荡器的稳定性改善. 物理学报, 2008, 57(5): 2971-2975. doi: 10.7498/aps.57.2971
计量
  • 文章访问数:  12769
  • PDF下载量:  4208
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-20
  • 修回日期:  2014-11-17
  • 刊出日期:  2015-02-05

/

返回文章
返回