-
作为近年来光伏领域最具竞争力的材料之一, 有机-无机杂化钙钛矿受到了广泛的关注. 然而, 由于薄膜制备手段的限制, 工业化大面积生产钙钛矿太阳能电池仍处于起步阶段. 喷墨打印技术是由家庭和办公室印刷发展而来的一种重要的工业制造技术, 广泛应用于各种印刷电子行业. 与其他沉积方法相比, 它具有成本低、材料利用率高和图案化精度高等优势. 作为一种直接书写技术, 喷墨打印已经显示出了巨大的工业化潜力, 并有望在钙钛矿太阳能电池产业化中获得应用. 本文回顾了喷墨打印钙钛矿太阳能电池的发展进程, 对喷墨打印技术应用到钙钛矿太阳能电池的各个功能层 (电极、空穴传输层、电子传输层、钙钛矿活性层) 的情况进行了总结, 并分析了喷墨打印钙钛矿太阳能电池的现状. 最后, 讨论了现阶段喷墨打印钙钛矿太阳能电池所面临的挑战, 并对未来喷墨打印技术在钙钛矿材料的商业化应用方面进行了展望.In the field of photovoltaic materials, perovskite has attracted extensive attention during the past years, owing to its excellent photovoltaic properties, including high charge carrier mobility, low exciton binding energy, long charge carrier diffusion length, broad light absorption spectrum, large absorption coefficient, and low-cost solution processability. However, due to the limitations of film preparation methods (typical spin coating), industrial large-scale production of perovskite solar cells is still in infancy. The inkjet printing technology is a significant manufacturing technology developed from home and office printing and widely used in various printing electronics industries. Compared with other deposition methods, it possesses many advantages, including low cost, high material utilization, high patterning precision, etc. As a direct writing technology, the inkjet printing has shown great industrial potential and is expected to be employed in the industrialization of perovskite solar cells. In this paper, we review the research progress of perovskite solar cells fabricated via the inkjet printing and the application of inkjet printing technology to various functional layers (electrode, hole transport layer, electron transport layer, perovskite active layer). Finally, the challenges of inkjet printed perovskite solar cells at this stage are discussed, and the commercialization direction of inkjet printed perovskite solar cells is also pointed out.
-
Keywords:
- inkjet printing technology /
- perovskite /
- soler cells /
- large-scale manufacturing
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] Chilvery A K, Batra A K, Yang B, Xiao K, Guggilla P, Aggarwal M D, Surabhi R, Lal R B, Currie J R, Penn B G 2015 J. Photon. Energy 5 57402Google Scholar
[3] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar
[4] Noh J H, Im S H, Heo J H, Mandal T N, Seok S 2013 Nano Lett. 13 1764Google Scholar
[5] Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar
[6] Kim J, Lee S H, Lee J H, Hong K H 2014 Phys. Chem. Lett. 5 1312Google Scholar
[7] Peng X J, Yuan J, Shen S, Gao M, Chesman A S R, Yin H, Cheng J S, Zhang Q, Angmo D 2017 Adv. Funct. Mater. 27 1703704Google Scholar
[8] Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar
[9] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar
[10] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar
[11] Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nature Photon. 7 486Google Scholar
[12] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar
[13] Nie W, Tsai H, Asadpour R, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M, Wang H, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M, Wang H, Mohite A D, 2015 Science 347 522Google Scholar
[14] Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J 2017 Adv. Mater. 29 1703852Google Scholar
[15] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376Google Scholar
[16] NREL 2019 Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2019-03-04]
[17] Liang C, Zhao D, Li Y, Li X, Peng S, Shao G, Xing G 2018 Energy Environ. Mater. 1 221Google Scholar
[18] Liu T, Chen K, Hu Q, Zhu R, Gong Q 2016 Adv. Energy Mater. 1600457
[19] Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar
[20] Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L 2014 Energy Environ. Sci. 7 2934Google Scholar
[21] Liu T, Zhou Y, Hu Q, Chen K, Zhang Y, Yang W, Wu J, Ye F, Luo D, Zhu K, Padture N P, Liu F, Russell T, Zhu R, Gong Q 2017 Sci. China: Mater. 60 608Google Scholar
[22] Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L 2014 Energy Environ. Sci. 7 2963Google Scholar
[23] Gao P, Graetzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448Google Scholar
[24] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar
[25] Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622Google Scholar
[26] Singh M, Haverinen H M, Dhagat P, Jabbour G E 2010 Adv. Mater. 22 673Google Scholar
[27] Roldán-Carmona C, Malinkiewicz O, Soriano A, Espallargas G M, Garcia A, Reinecke P, Kroyer T, Dar M I, Nazeeruddin M K, Bolink H J 2014 Energy Environ. Sci. 7 994Google Scholar
[28] Basaran O A, Gao H, Bhat P P 2013 Annu. Rev. Fluid Mech. 45 85Google Scholar
[29] Derby B 2010 Annu. Rev. Mater. Res. 40 395Google Scholar
[30] Clay K, Gardner I, Bresler E, Seal M, Speakman S 2002 Circuit World 28 24Google Scholar
[31] van den Berg A M, de Laat A W, Smith P J, Perelaer J, Schubert U S 2007 J. Mater. Chem. 17 677Google Scholar
[32] Tian D L, Song Y L, Jiang L 2013 Chem. Soc. Rev. 42 5184Google Scholar
[33] Yin Z, Huang Y, Bu N, Wang X, Xiong Y 2010 Sci. Bull. 55 3383Google Scholar
[34] Cao X, Wu F, Lau C, Liu Y, Liu Q, Zhou C 2017 ACS Nano 11 2008Google Scholar
[35] Kuang M X, Wang L B, Song Y L 2014 Adv. Mat. 26 6950Google Scholar
[36] Calvert P 2001 Chem. Mater. 13 3299Google Scholar
[37] Hwang K, Jung Y S, Heo Y J, Scholes F H, Watkins S E, Subbiah J, Jones D J, Kim D Y, Vak D 2015 Adv. Mater. 27 1241Google Scholar
[38] Wei Z H, Chen H N, Yan K Y, Yang S L 2014 Angew. Chem. Int. Ed. 53 13239Google Scholar
[39] Li S G, Jiang K J, Su M J, Cui X P, Huang J H, Zhang Q Q, Zhou X Q, Yang L M, Song Y L 2015 J. Mater. Chem. A 3 9092Google Scholar
[40] Hashmi S G, Martineau D, Li X, Ozkan M, Tiihonen A, Dar M I, Sarikka T, Zakeeruddin S M, Paltakari J, Lund P D 2017 Adv. Mater. Technol. 2 1600183Google Scholar
[41] Hashmi S G, Tiihonen A, Martineau D, Ozkan M, Vivo P, Kaunisto K, Ulla V, Zakeeruddin S M, Grätzel M 2017 J. Mater. Chem. A 5 4797Google Scholar
[42] Bag M, Jiang Z, Renna L A, Jeong S P, Rotello V M, Venkataraman D 2016 Mater. Lett. 164 472Google Scholar
[43] Jiang Z, Bag M, Renna L, Jeong S P, Rotello V, Venkataraman D 2016 HAL 01386295
[44] Mathies F, Abzieher T, Hochstuhl A, Glaser K, Colsmann A, Paetzold U W, Hernandez-Sosa G, Lemmer U, Quintilla A 2016 J. Mater. Chem. A 4 19207Google Scholar
[45] Liang C, Li P, Gu H, Zhang Y, Li F, Song Y, Shao G, Mathews N, Xing G 2018 Solar RRL 2 1700217
[46] Li P, Liang C, Bao B, Li Y, Hu X, Wang Y, Zhang Y, Li F, Shao G, Song Y 2018 Nano Energy 46 203Google Scholar
[47] Mathies F, Eggers H, Richards B S, Hernandez-Sosa G, Lemmer U, Paetzold U W 2018 ACS Appl. Energy Mater. 1 1834Google Scholar
[48] Schlisske S, Mathies F, Busko D, Strobel N, Rödlmeier T, Richards B S, Lemmer U, Paetzold U W, Hernandez-Sosa G, Klampaftis E 2019 ACS Appl. Energy Mater. 2 764
[49] Abzieher T, Moghadamzadeh S, Schackmar F, Eggers H, Sutterlüti F, Farooq A, Kojda D, Habicht K, Schmager R, Mertens A, Azmi R, Klohr L, Schwenzer J A, Hetterich M, Lemmer U, Richards B S, Powalla M, Paetzold U W 2019 Adv. Energy Mater. 9 1802995
[50] Xie M, Lu H, Zhang L, Wang J, Luo Q, Lin J, Ba L, Liu H, Shen W, Shi L 2018 Solar RRL 2 1700184
[51] Huckaba A J, Lee Y, Xia R, Paek S, Bassetto V C, Oveisi E, Lesch A, Kinge S, Dyson P J, Girault H 2019 Energy Technol. 7 317
[52] Gheno A, Huang Y, Bouclé J, Ratier B, Rolland A, Even J, Vedraine S 2018 Solar RRL 2 1800191
-
图 3 IJP法制备钙钛矿薄膜 (a) RIJP[43]; (b)一步IJP法[45]; (c)两步IJP法与旋涂法制备薄膜的对比[46]; (d) IJP三阳离子PeSCs的断面扫描电子显微镜(scanning electron microscope, SEM)图[47]; (e)结合LDS层的PeSCs器件结构[48]; (f)在室灯下掺杂浓度分别为5 wt% (左)和0.5 wt% (右)的IJP LDS层照片[48]; (g) NiOx作为HTLs的器件结构[49]; (h)使用不同方法(旋涂和IJP)在NiOx上沉积钙钛矿层的电池性能比较[49]; (i)紫外照射下器件降解情况[49]
Fig. 3. Inkjet printed perovskite thin films: (a) Schematic diagram of RIJP[43]; (b) fabrication process of one-step inkjet printing[45]; (c) comparison of thin films on mesoporous TiO2 layer using inkjet printing and spin-coating[46]; (d) cross-sectional SEM images of inkjet-printed triple cation perovskite solar cells[47]; (e) device structure of LDS based perovskite solar cells[48]; (f) photograph of inkjet-printed LDS layers with a doping concentration of 5 wt% (left) and 0.5 wt% (right) under room light[49]; (g) structure of the perovskite solar cells with the NiOx as the HTLs[49]; (h) performance comparison of inkjet-printed and spin-coated perovskite solar cells with the NiOx as the HTLs[49]; (i) device degradation under intense UV radiation[49].
图 4 IJP法制备载流子传输层和电极 (a) IJP AgNW沉积于PVSK/PC61BM/PEI表面SEM照片[50]; (b)采用旋涂法和IJP法制备的介孔TiO2器件的伏安特性曲线[51]; (c) IJP TiO2及钙钛矿层的器件伏安特性曲线[51].
Fig. 4. Inkjet printed carrier transport layer and electrode: (a) SEM image of printed AgNW electrode on PVSK/PC61BM/PEI surface[50]; (b) voltage-current characteristic curves of solar cells with spin-coated and inkjet-printed mesoporous TiO2[51]; (c) voltage-current characteristic curve of the solar cell with inkjet prited TiO2 and perovskite layers[51].
表 1 基于IJP技术制备的PeSCs的性能与结构
Table 1. Summary of structure and performance of inkjet printed PeSCs.
IJP层 器件结构 面积/cm2 性能 参考
文献Voc/V Jsc/mA·cm–2 FF/% PCE/% Top electrode and active layer Glass/FTO/TiO2/MAPbI3(IJP)/C(IJP) 0.15 0.95 17.20 71.0 11.60 [38] Active layer Glass/FTO/com-TiO2/meso-TiO2/MAPbI3(IJP)/spiro-MeOTAD/Au 0.04 0.91 19.55 69.0 12.30 [39] Active layer Glass/FTO/com-TiO2/meso-TiO2/ZrO2/Perovskite (IJP)/C 0.16 0.84 15.30 65.7 8.47 [40] Active layer Glass/ITO/PEDOT:PSS/PbI2-(2MA:1FA)I(IJP)/PCBM/Al — 0.87 18.77 68.0 11.10 [42] Active layer Glass/ITO/PEDOT:PSS/Pb(OAc)2-CH3NH3I(IJP)/PCBM/Al — 0.50 4.28 44.4 0.94 [43] Active layer Glass/FTO/com-TiO2/MAPbI3(IJP)/spiro-MeOTAD/Au 0.09 1.00 18.40 56 11.30 [44] Active layer Glass/FTO/TiO2/C60/MAPbI3(IJP)/spiro-MeOTAD/Au 0.04
41.08
1.0422.71
20.4069.58
62.5717.04
13.27[45] Active layer Glass/FTO/c-TiO2/m-TiO2/PbI2(IJP) + MAI(Vapor)/Au 0.04 1.06 22.51 75.1 18.64 [46] 2.02 1.06 21.88 76.5 17.74 Active layer Glass/FTO/TiO2/Cs0.1(FA0.83MA0.17)0.9Pb(Br0.17I0.83)3(IJP)/spiro-MeOTAD/Au 0.09 1.06 21.5 67 12.9 [47] Active layer LDS(IJP)/Glass/FTO/TiO2/Cs0.1(FA0.83MA0.17)0.9Pb(Br0.17I0.83)3(IJP)/spiro-MeOTAD/Au 0.09 1.06 21.5 67 9.4 [48] Active layer glass/ITO/NiOx/Csx(FA0.83MA0.17)1–xPb (Br0.15I0.85)3(IJP)/C60/BCP/Au 0.105 1.09 22.7 79.0 19.5 [49] Top electrode ITO/PEDOT: PSS/CH3NH3PbClxI3–x/
PC61BM/PEI/AgNW(IJP)0.09 1.04 18.17 75 14.17 [50] ETLs and active layer Glass/FTO/com-TiO2/meso-TiO2(IJP)/perovskite (IJP)/spiro-MeOTAD/Au < 1 1.05 22.65 76.3 18.29 [51] ETLs, active layer and HTLs ITO/WOx(IJP)/CH3NH3PbI3–xClx(IJP)/
spiro-MeOTAD(IJP)/Au— 0.744 22.1 65 10.7 [52] -
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] Chilvery A K, Batra A K, Yang B, Xiao K, Guggilla P, Aggarwal M D, Surabhi R, Lal R B, Currie J R, Penn B G 2015 J. Photon. Energy 5 57402Google Scholar
[3] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar
[4] Noh J H, Im S H, Heo J H, Mandal T N, Seok S 2013 Nano Lett. 13 1764Google Scholar
[5] Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar
[6] Kim J, Lee S H, Lee J H, Hong K H 2014 Phys. Chem. Lett. 5 1312Google Scholar
[7] Peng X J, Yuan J, Shen S, Gao M, Chesman A S R, Yin H, Cheng J S, Zhang Q, Angmo D 2017 Adv. Funct. Mater. 27 1703704Google Scholar
[8] Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar
[9] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar
[10] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar
[11] Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nature Photon. 7 486Google Scholar
[12] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar
[13] Nie W, Tsai H, Asadpour R, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M, Wang H, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M, Wang H, Mohite A D, 2015 Science 347 522Google Scholar
[14] Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J 2017 Adv. Mater. 29 1703852Google Scholar
[15] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376Google Scholar
[16] NREL 2019 Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2019-03-04]
[17] Liang C, Zhao D, Li Y, Li X, Peng S, Shao G, Xing G 2018 Energy Environ. Mater. 1 221Google Scholar
[18] Liu T, Chen K, Hu Q, Zhu R, Gong Q 2016 Adv. Energy Mater. 1600457
[19] Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar
[20] Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L 2014 Energy Environ. Sci. 7 2934Google Scholar
[21] Liu T, Zhou Y, Hu Q, Chen K, Zhang Y, Yang W, Wu J, Ye F, Luo D, Zhu K, Padture N P, Liu F, Russell T, Zhu R, Gong Q 2017 Sci. China: Mater. 60 608Google Scholar
[22] Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L 2014 Energy Environ. Sci. 7 2963Google Scholar
[23] Gao P, Graetzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448Google Scholar
[24] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar
[25] Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622Google Scholar
[26] Singh M, Haverinen H M, Dhagat P, Jabbour G E 2010 Adv. Mater. 22 673Google Scholar
[27] Roldán-Carmona C, Malinkiewicz O, Soriano A, Espallargas G M, Garcia A, Reinecke P, Kroyer T, Dar M I, Nazeeruddin M K, Bolink H J 2014 Energy Environ. Sci. 7 994Google Scholar
[28] Basaran O A, Gao H, Bhat P P 2013 Annu. Rev. Fluid Mech. 45 85Google Scholar
[29] Derby B 2010 Annu. Rev. Mater. Res. 40 395Google Scholar
[30] Clay K, Gardner I, Bresler E, Seal M, Speakman S 2002 Circuit World 28 24Google Scholar
[31] van den Berg A M, de Laat A W, Smith P J, Perelaer J, Schubert U S 2007 J. Mater. Chem. 17 677Google Scholar
[32] Tian D L, Song Y L, Jiang L 2013 Chem. Soc. Rev. 42 5184Google Scholar
[33] Yin Z, Huang Y, Bu N, Wang X, Xiong Y 2010 Sci. Bull. 55 3383Google Scholar
[34] Cao X, Wu F, Lau C, Liu Y, Liu Q, Zhou C 2017 ACS Nano 11 2008Google Scholar
[35] Kuang M X, Wang L B, Song Y L 2014 Adv. Mat. 26 6950Google Scholar
[36] Calvert P 2001 Chem. Mater. 13 3299Google Scholar
[37] Hwang K, Jung Y S, Heo Y J, Scholes F H, Watkins S E, Subbiah J, Jones D J, Kim D Y, Vak D 2015 Adv. Mater. 27 1241Google Scholar
[38] Wei Z H, Chen H N, Yan K Y, Yang S L 2014 Angew. Chem. Int. Ed. 53 13239Google Scholar
[39] Li S G, Jiang K J, Su M J, Cui X P, Huang J H, Zhang Q Q, Zhou X Q, Yang L M, Song Y L 2015 J. Mater. Chem. A 3 9092Google Scholar
[40] Hashmi S G, Martineau D, Li X, Ozkan M, Tiihonen A, Dar M I, Sarikka T, Zakeeruddin S M, Paltakari J, Lund P D 2017 Adv. Mater. Technol. 2 1600183Google Scholar
[41] Hashmi S G, Tiihonen A, Martineau D, Ozkan M, Vivo P, Kaunisto K, Ulla V, Zakeeruddin S M, Grätzel M 2017 J. Mater. Chem. A 5 4797Google Scholar
[42] Bag M, Jiang Z, Renna L A, Jeong S P, Rotello V M, Venkataraman D 2016 Mater. Lett. 164 472Google Scholar
[43] Jiang Z, Bag M, Renna L, Jeong S P, Rotello V, Venkataraman D 2016 HAL 01386295
[44] Mathies F, Abzieher T, Hochstuhl A, Glaser K, Colsmann A, Paetzold U W, Hernandez-Sosa G, Lemmer U, Quintilla A 2016 J. Mater. Chem. A 4 19207Google Scholar
[45] Liang C, Li P, Gu H, Zhang Y, Li F, Song Y, Shao G, Mathews N, Xing G 2018 Solar RRL 2 1700217
[46] Li P, Liang C, Bao B, Li Y, Hu X, Wang Y, Zhang Y, Li F, Shao G, Song Y 2018 Nano Energy 46 203Google Scholar
[47] Mathies F, Eggers H, Richards B S, Hernandez-Sosa G, Lemmer U, Paetzold U W 2018 ACS Appl. Energy Mater. 1 1834Google Scholar
[48] Schlisske S, Mathies F, Busko D, Strobel N, Rödlmeier T, Richards B S, Lemmer U, Paetzold U W, Hernandez-Sosa G, Klampaftis E 2019 ACS Appl. Energy Mater. 2 764
[49] Abzieher T, Moghadamzadeh S, Schackmar F, Eggers H, Sutterlüti F, Farooq A, Kojda D, Habicht K, Schmager R, Mertens A, Azmi R, Klohr L, Schwenzer J A, Hetterich M, Lemmer U, Richards B S, Powalla M, Paetzold U W 2019 Adv. Energy Mater. 9 1802995
[50] Xie M, Lu H, Zhang L, Wang J, Luo Q, Lin J, Ba L, Liu H, Shen W, Shi L 2018 Solar RRL 2 1700184
[51] Huckaba A J, Lee Y, Xia R, Paek S, Bassetto V C, Oveisi E, Lesch A, Kinge S, Dyson P J, Girault H 2019 Energy Technol. 7 317
[52] Gheno A, Huang Y, Bouclé J, Ratier B, Rolland A, Even J, Vedraine S 2018 Solar RRL 2 1800191
计量
- 文章访问数: 19801
- PDF下载量: 557
- 被引次数: 0