搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全喷墨打印的大面积柔性CH3NH3PbI3钙钛矿太阳能电池

高博文 孟婧

引用本文:
Citation:

全喷墨打印的大面积柔性CH3NH3PbI3钙钛矿太阳能电池

高博文, 孟婧

Large area and flexible CH3NH3PbI3 perovskite solar cell fabricated by all ink jet printing

Gao Bo-Wen, Meng Jing
PDF
HTML
导出引用
  • 目前基于喷墨打印制备大面积CH3NH3PbI3钙钛矿型太阳能电池的报道较多, 主要集中在钙钛矿活性层薄膜的喷墨打印和电极打印两个方面, 电池结构中空穴传输层和电子传输层以及其他修饰层仍采用旋涂或涂布等工艺完成. 我们成功实现了基于全喷墨打印的大面积CH3NH3PbI3钙钛矿太阳能电池, 包括喷墨打印PEN/Ag NWs底电极, Ag NWs顶电极, PEDOT:PSS 空穴传输层等. 研究发现全喷墨打印可以极大地节约材料成本和简化生产工艺流程, 并且可以获得密度高、均匀性好的PC61BM层、PEDOT:PSS层、PEI层和CH3NH3PbI3钙钛矿薄膜, 在此基础上制备了面积分别为60, 80和100 cm2的CH3NH3PbI3钙钛矿型太阳电池. 结果表明, 当钙钛矿油墨浓度为1 mol/L时, 打印速度设置为30 mm/s, 衬底温度为50 ℃时, 打印生成的钙钛矿薄膜表面光滑, 晶粒均匀生长有序, 晶粒尺寸接近500—600 nm. 晶粒具有规则的扁平形状, 薄膜的表面粗糙度仅为10 nm, 可以获得高质量的钙钛矿薄膜. 采用绿色反溶剂萃取和热退火处理的有效面积为60 cm2的钙钛矿型太阳能电池的功率转换效率高达14.25% (Voc = 1.03 V, Jsc = 19.21 mA/cm2, FF = 72%), 这是迄今为止报道的用全喷墨打印法制备钙钛矿型太阳能电池的最高效率之一. 此外, 当器件在不封装时放置空气中12个月, 光电转换效率降低到初始值的80%. 然而采用含氟热塑性聚氨酯FTPU封装, 光电转换效率仅降低5%, 表现出良好的器件稳定性.
    At present, there are many reports on the preparation of large area CH3NH3PbI3 perovskite solar cells based on ink-jet printing. These researches focus mainly on the ink-jet printing and electrode printing of perovskite active layer films. The hole transport layer, electron transport layer and other modified layers in the cell structure are still completed by spin coating or coating. In this work, we successfully realize large area CH3NH3PbI3 perovskite solar cells based on full ink-jet printing, including pen/Ag NWs bottom electrode, agnws top electrode, PEDOT: PSS hole transport layer, etc. It is found that the full inkjet printing can greatly reduce the material cost and simplify the production process, and obtain PC61BM layer, PEDOT: PSS layer, PEI layer and CH3NH3PbI3 perovskite thin film with high density and good uniformity. On this basis, we prepare the CH3NH3PbI3 perovskite solar cells with areas of 60, 80 and 100 cm2, respectively. The results show that when the concentration of perovskite ink is 1 mol/L, the printing speed is 30 mm/s and the substrate temperature is 50 ℃, the surface of perovskite film is smooth and the grain size is in a range of 500–600 nm. The surface roughness of the film is only 10 nm, so high-quality perovskite film can be obtained. The power conversion efficiency of the perovskite solar cell with an effective area of 60 cm2 is as high as 14.25% (VOC = 1.03 V, JSC = 19.21 mA/cm2, FF = 72%), which is the highest efficiency of perovskite solar cell prepared by full ink-jet printing method reported so far. In addition, when the device is placed in the air for 12 months without packaging, the photoelectric conversion efficiency is reduced to 80% of the initial value. However, the photoelectric conversion efficiency of FTPU package is reduced only by 5%, demonstrating good device stability.
      通信作者: 高博文, gbwhappy@163.com ; 孟婧, mmmjjjcg@163.com
    • 基金项目: 山东省自然科学基金重点项目(批准号: ZR2020KF001)、山东省重点研发计划(批准号: 2019GGX103005)和泰山学院教育教学研究专项重点课题(批准号: JY-01-202101)资助的课题
      Corresponding author: Gao Bo-Wen, gbwhappy@163.com ; Meng Jing, mmmjjjcg@163.com
    • Funds: Project supported by the Key Program of the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020KF001), the Key R&D Program of Shandong Province, China (Grant No. 2019GGX103005), and the Special Key Project of Education and Teaching Research of Taishan University, China (Grant No. JY-01-202101)
    [1]

    Liang C, Li P, Gu H, Zhang Y, Li F, Song Y, Shao G, Mathews N, Xing G 2018 Solar RRL 2 1700217Google Scholar

    [2]

    Li P, Liang C, Bao B, Li Y, Hu X, Wang Y, Zhang Y, Li F, Shao G, Song Y 2018 Nano Energy 46 203Google Scholar

    [3]

    Mathies F, Eggers H, Richards B S, Hernandez-Sosa G, Lemmer U, Paetzold U W 2018 ACS Appl. Energy Mater. 1 1834Google Scholar

    [4]

    Schlisske S, Mathies F, Busko D, Strobel N, Lemmer U, Paetzold U W, Hernandez-Sosa G, Klampaftis E 2019 ACS Appl. Energy Mater. 2 764Google Scholar

    [5]

    Abzieher T, Moghadamzadeh S, Schackmar F, Eggers H, Sutterlüti F, Farooq A, Kojda D, Paetzold U W 2019 Adv. Energy Mater. 9 1802995Google Scholar

    [6]

    Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar

    [7]

    Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar

    [8]

    Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar

    [9]

    Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar

    [10]

    Stolterfoht M, Caprioglio P, Wolff C M, et al. 2019 Energy Environ. Sci. 12 2778Google Scholar

    [11]

    Correa-Baena J B, Luo Y Q, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar

    [12]

    Beal R E, Hagström N Z, Barrier J, McGehee M D, Toney M F, Nogueira A F 2020 Matter 2 207Google Scholar

    [13]

    Mehrabian M, Dalir S, Mahmoudi G, Safin D A 2019 Eur. J. Inorg. Chem. 2019 3699

    [14]

    Gao B W, Meng J 2020 Solar Energy 211 1223Google Scholar

    [15]

    Gao B W, Meng J 2020 ACS Appl. Energy Mater. 3 8249Google Scholar

    [16]

    Gao B W, Meng J 2020 Appl. Surf.Sci. 530 147240Google Scholar

    [17]

    Hashmi S G, Tiihonen, Martineau D, Zakeeruddin S M, Grätzel M 2017 J. Mater. Chem. A 5 4797Google Scholar

    [18]

    Huckaba A J, Lee Y, Xia R, Paek S, Dyson P J, Girault H 2019 Energy Technol. 7 317Google Scholar

    [19]

    Ye T, Han G F, Surendran A, Li J 2019 Solar Energy Materials and Solar Cells 201 110113Google Scholar

    [20]

    Liang C, Zhao D, Li Y, Xing G 2018 Energy Environ. Mater. 1 221Google Scholar

  • 图 1  在PEN/AgNWs/PEDOT:PSS上以及30 mm/s和50 ℃条件下不同浓度的钙钛矿薄膜AFM形貌 (a) 0.5 mol/L; (b) 1.0 mol/L; (c) 1.5 mol/L

    Fig. 1.  AFM morphologies of perovskite films with different concentrations on PEN/AgNWs/PEDOT:PSS, 30 mm/s and 50 ℃: (a) 0.5 mol/L; (b) 1.0 mol/L; (c) 1.5 mol/L

    图 2  在PEN/AgNWs/PEDOT:PSS上以及30 mm/s和50 ℃条件下不同浓度的钙钛矿薄膜SEM表面形貌图和器件部分截面图 (a), (d) 0.5 mol/L; (b), (e) 1.0 mol/L; (c), (f) 1.5 mol/L

    Fig. 2.  SEM surface morphologies of perovskite thin films with different concentrations on PEN/AgNWs/PEDOT: PSS at 30 mm/s and 50 ℃: (a), (d) 0.5 mol/L; (b), (e) 1.0 mol/L; (c), (f) 1.5 mol/L.

    图 3  在不同衬底温度下制备的钙钛矿电池参数 (a) 钙钛矿薄膜的XRD数据; (b)器件结构示意图; (c) 电池能级图; (d) 电池实物图

    Fig. 3.  Parameters of perovskite solar cells prepared at different substrate temperatures: (a) XRD data of perovskite thin films; (b) device structure diagram; (c) energy level diagram and (d) physical diagram of PeSCs.

    图 4  不同有效面积的钙钛矿电池光伏性能和稳定性 (a) J-V曲线; (b) EQE曲线; (c) 器件稳定性测试

    Fig. 4.  Photovoltaic performance and stability of perovskite solar cells with different effective areas: (a) J-V curve; (b) EQE curve; (c) device stability test.

    表 1  不同直径和长度的Ag NWs透明电极的方阻和透射率

    Table 1.  Square resistance and transmittance of Ag NWS transparent electrodes with different diameters and lengths.

    印刷速度/
    (mm·s–1)
    直径/nm长度/μm透射率/%方阻/
    (Ω·sq–1)
    1080409080
    1560509260
    2050609530
    3030809040
    下载: 导出CSV

    表 2  不同有效面积的钙钛矿电池光伏特性和器件参数

    Table 2.  Photovoltaic characteristics and device parameters of perovskite cells with different effective areas.

    电池有效
    面积/cm2
    串联电阻
    /(Ω·cm2)
    并联电阻
    /(Ω·cm2)
    Voc/VJsc/(mA·cm–2)FF/%PCE/%
    608016001.0319.217214.25
    8010010001.0216.956811.82
    1001208001.0113.90669.26
    下载: 导出CSV
  • [1]

    Liang C, Li P, Gu H, Zhang Y, Li F, Song Y, Shao G, Mathews N, Xing G 2018 Solar RRL 2 1700217Google Scholar

    [2]

    Li P, Liang C, Bao B, Li Y, Hu X, Wang Y, Zhang Y, Li F, Shao G, Song Y 2018 Nano Energy 46 203Google Scholar

    [3]

    Mathies F, Eggers H, Richards B S, Hernandez-Sosa G, Lemmer U, Paetzold U W 2018 ACS Appl. Energy Mater. 1 1834Google Scholar

    [4]

    Schlisske S, Mathies F, Busko D, Strobel N, Lemmer U, Paetzold U W, Hernandez-Sosa G, Klampaftis E 2019 ACS Appl. Energy Mater. 2 764Google Scholar

    [5]

    Abzieher T, Moghadamzadeh S, Schackmar F, Eggers H, Sutterlüti F, Farooq A, Kojda D, Paetzold U W 2019 Adv. Energy Mater. 9 1802995Google Scholar

    [6]

    Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar

    [7]

    Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar

    [8]

    Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar

    [9]

    Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar

    [10]

    Stolterfoht M, Caprioglio P, Wolff C M, et al. 2019 Energy Environ. Sci. 12 2778Google Scholar

    [11]

    Correa-Baena J B, Luo Y Q, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar

    [12]

    Beal R E, Hagström N Z, Barrier J, McGehee M D, Toney M F, Nogueira A F 2020 Matter 2 207Google Scholar

    [13]

    Mehrabian M, Dalir S, Mahmoudi G, Safin D A 2019 Eur. J. Inorg. Chem. 2019 3699

    [14]

    Gao B W, Meng J 2020 Solar Energy 211 1223Google Scholar

    [15]

    Gao B W, Meng J 2020 ACS Appl. Energy Mater. 3 8249Google Scholar

    [16]

    Gao B W, Meng J 2020 Appl. Surf.Sci. 530 147240Google Scholar

    [17]

    Hashmi S G, Tiihonen, Martineau D, Zakeeruddin S M, Grätzel M 2017 J. Mater. Chem. A 5 4797Google Scholar

    [18]

    Huckaba A J, Lee Y, Xia R, Paek S, Dyson P J, Girault H 2019 Energy Technol. 7 317Google Scholar

    [19]

    Ye T, Han G F, Surendran A, Li J 2019 Solar Energy Materials and Solar Cells 201 110113Google Scholar

    [20]

    Liang C, Zhao D, Li Y, Xing G 2018 Energy Environ. Mater. 1 221Google Scholar

  • [1] 杨迎国, 冯尚蕾, 李丽娜. 溶液法原位大面积制备钙钛矿光电薄膜成膜的同步辐射可视化结晶过程研究. 物理学报, 2024, 73(6): 063201. doi: 10.7498/aps.73.20231847
    [2] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [3] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240218
    [4] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池的研究. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [5] 尉渊, 邢若飞, 杜慧恬, 周倩, 范继辉, 庞智勇, 韩圣浩. 通过pH值精细调控氧化镍纳米颗粒粒度提升反式钙钛矿太阳能电池性能. 物理学报, 2023, 72(1): 018101. doi: 10.7498/aps.72.20221640
    [6] 张笑, 吕嘉煜, 管焰秋, 李慧, 王锡明, 张蜡宝, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 吴培亨. 超大面积超导纳米线阵列单光子探测器设计与制备. 物理学报, 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [7] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] 韩思奇, 张海明, 何青辰, 李育洁, 王汝峰. 前驱体膜处理工艺制备高性能碳基CsPbIBr2钙钛矿太阳能电池. 物理学报, 2021, 70(22): 228801. doi: 10.7498/aps.70.20211079
    [9] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [10] 单欣, 王芳, 胡凯, 魏俊青, 林欣, 赵轩宇, 周宝增, 张楷亮. 大面积α-MoO3的制备及其存储计算研究进展. 物理学报, 2021, 70(9): 098103. doi: 10.7498/aps.70.20201813
    [11] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [12] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [13] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [14] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [16] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [17] 海阔, 唐东升, 袁华军, 彭跃华, 罗志华, 刘红霞, 陈亚琦, 余芳, 羊亿. 大面积α-Fe2O3纳米线及纳米带阵列的制备研究. 物理学报, 2009, 58(2): 1120-1125. doi: 10.7498/aps.58.1120
    [18] 翁 坚, 肖尚锋, 陈双宏, 戴松元. 大面积染料敏化太阳电池的实验研究. 物理学报, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [19] 谢 耩, 温建忠, 汪国平, 王建波. 聚合物表面银纳米颗粒的大面积均匀沉积及其应用. 物理学报, 2005, 54(1): 242-245. doi: 10.7498/aps.54.242
    [20] 伞海生, 陈 冲, 何毓阳, 王 君, 冯博学. n型透明导电薄膜CdIn2O4电学性质的研究和大面积制备的最佳条件. 物理学报, 2005, 54(4): 1736-1741. doi: 10.7498/aps.54.1736
计量
  • 文章访问数:  3641
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-24
  • 修回日期:  2021-05-30
  • 上网日期:  2021-10-07
  • 刊出日期:  2021-10-20

/

返回文章
返回