搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶液法原位大面积制备钙钛矿光电薄膜成膜的同步辐射可视化结晶过程研究

杨迎国 冯尚蕾 李丽娜

引用本文:
Citation:

溶液法原位大面积制备钙钛矿光电薄膜成膜的同步辐射可视化结晶过程研究

杨迎国, 冯尚蕾, 李丽娜

Solution slot-die coating perovskite film crystalline growth observed by in situ GIWAXS/GISAXS

Yang Ying-Guo, Feng Shang-Lei, Li Li-Na
PDF
HTML
导出引用
  • 溶液法是新型光电器件制备的重要手段, 然而以钙钛矿半导体材料为代表的薄膜样品制备通常需要在手套箱环境下完成, 传统的实验表征大多在空气环境下进行, 这显然很难反映薄膜结构与器件性能间的真实关联, 因此急需对溶液成膜过程的微结构演变开展原位实时研究. 为了实现溶液法成膜中的结构与形貌的同步辐射掠入射广角散射实时观测, 本文结合上海同步辐射光源线站布局, 报道了一种基于手套箱的原位成膜观测装置, 可实现标准手套箱环境(c(H2O, O2) < 1×10–6)下远程控制薄膜旋涂、涂布及样品后处理, 并实时可视化监测微结构和形貌演变. 基于该装置进行的钙钛矿薄膜狭缝涂布大面积成膜结晶过程的原位GIWAXS/GISAXS (grazing incidence wide and small angle X-ray scattering)可视化测试揭示了薄膜微结构转变的内在驱动力: 钙钛矿薄膜沉积界面层的优化对提升钙钛矿成核速率、诱导结晶择优取向、形成晶粒有序堆叠等具有“共性作用”, 同时在成膜过程中的新生中间相显著提升软晶格薄膜质量和稳定性. 基于各层均采用卷对卷全溶液狭缝涂布方法制备的大面积全柔性三维钙钛矿薄膜太阳能电池转换效率提升至5.23% (单个器件面积约15 cm2), 为迄今报道的这一体系该尺寸的全溶液狭缝涂布柔性钙钛矿器件的最高器件效率之一. 因而, 基于该同步辐射原位GIWAXS/S/GISAXS装置可以获得控制薄膜生长界面特性和薄膜品质的关键工艺, 指导优化制备薄膜的最佳工艺条件.
    Solution method is an important means of fabricating optoelectronic devices. During the thin film sample preparation, organic or inorganic perovskite semiconductor material usually needs to be finished in a glove box. However, most of the traditional experimental characterizations under the air environment, it is hard to reflect the reality of the structure and performance between film and device, therefore it is urgently needed to solve the microstructure evolutions of these semiconductor films based on in situ real-time representation technique. In this work, we report a synchrotron-based grazing incidence wide and small-angle scattering (GIWAXS and GISAXS) in situ real-time observation technique combined with a mini glove box, thereby realizing the standard glove box environment (H2O, O2 content all reached below 1×10–6) under remote control film spin coating or slot-die preparation and various sample post-processing. Meanwhile, this technique can real-time monitor the microstructure and morphology evolution of semiconductor film during fabrication. Based on the in situ device and GIWAXS, SnO2 ETL interface induced perovskite growth crystallization process shows that CQDs additive can result in three-dimensional perovskite, with the random orientation growth changing into highly ordered vertical orientation, meanwhile can effectively restrain the low-dimensional perovskite domain formation, helping to reveal the film microstructure transformation of inner driving force and providing the perovskite device preparation process optimized with experimental and theoretical basis. The conversion efficiency of large-area fully flexible three-dimensional perovskite thin film solar cells prepared by the roll-to-roll total solution slit coating method is increased to 5.23% (the area of a single device is ~15 cm2). Therefore, using the in situ synchrotron-based glove box device, the microstructure evolution and the associated device preparation conditions of perovskite and organic semiconductor thin films can be controlled, and the thin film growth interface characteristics and film quality can be further controlled, which is the key technology to control the optimization process conditions of semiconductor thin films and devices.
      通信作者: 杨迎国, yangyingguo@fudan.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0403400)、国家自然科学基金(批准号: 12175298, 12075309)、复旦大学人才启动项目和上海市自然科学基金(批准号: 20ZR1464100)资助的课题.
      Corresponding author: Yang Ying-Guo, yangyingguo@fudan.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403400), the National Natural Science Foundation of China (Grant Nos. 12175298, 12075309), the Talents Staring Foundation of Fudan University, China, and the Shanghai Municipal Commission for Science and Technology, China (Grant No. 20ZR1464100).
    [1]

    Ajay K J, Ashish K, Tsutomu M 2019 Chem. Rev. 119 3036Google Scholar

    [2]

    https://www.nrel.gov/pv/cell-efficiency.html [2023-11-22]

    [3]

    Han T H, Tan S, Xue J J, Meng L, Lee J W, Yang Y 2019 Adv. Mater. 31 1803515Google Scholar

    [4]

    Luo D Y, Su R, Zhang W, Gong Q H, Zhu R 2020 Nat. Rev. Mater. 5 44

    [5]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [6]

    Zhang H, Wang H, Williams S, Xiong D H, Zhang W J, Chueh C C, Chen W, Alex K J 2017 Adv. Mater. 29 1606608Google Scholar

    [7]

    Yang Y, Feng S L, Xu W D, Li M, Li L, Zhang X M, Ji G W, Zhang X N, Wang Z K, Xiong Y M, Cao L, Sun B Q, Gao X Y 2017 ACS Appl. Mater. interfaces 9 23141Google Scholar

    [8]

    Li F C, Yuan J Y, Ling X, Zhang Y, Yang Y G, Cheun S H, Carr H, Gao X F, Ma W L 2018 Adv. Funct. Mater. 28 1706377Google Scholar

    [9]

    Li H, Zuo C T, Angmo D, Weerasinghe H, Gao M, Yang J L 2022 Nano-Micro Lett. 14 79Google Scholar

    [10]

    Tan H, Jain A, Voznyy O, Lan X, Arquer F P, Fan J, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [11]

    Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W 2020 Adv. Mater. 32 1906374Google Scholar

    [12]

    Wang Z K, Gong X, Li M, Hu Y, Wang J M, Ma H, Liao L S 2016 ACS Nano 10 5479Google Scholar

    [13]

    Feng S L, Yang Y G, Li M, Wang J M, Cheng Z, Li J, Ji G W, Yin G Z, Song F, Wang Z K, Li J, Gao X Y 2016 ACS appl. Mater. Interfaces 8 14503Google Scholar

    [14]

    Wang Y, Zhang T Y, Kan M, Zhao Y 2018 J. Am. Chem. Soc. 140 12345Google Scholar

    [15]

    Yang Y G, Feng S L, Li M, Li F C, Zhang C C, Han Y J, Li L, Yuan J, Cao L, Wang Z K, Sun B Q, Gao X Y 2018 Nano Energy 48 10Google Scholar

    [16]

    Yang Y, Yang M J, David T M, Yan Y, Miller E M, Zhu K, Beard M C 2017 Nat. Energy 2 16207Google Scholar

    [17]

    Yang Y G, Feng S L, Li M, Xu W D, Yin G Z, Wang Z K, Sun B Q, Gao X Y 2017 Sci. Rep. 7 46724Google Scholar

    [18]

    杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇 2017 物理学报 66 018401Google Scholar

    Yang Y G, Yin G Z, Feng S L, Li M, Ji G W, Song F, Wen W, Gao X Y 2017 Acta Phys. Sin. 66 018401Google Scholar

    [19]

    Kuai L, Li J N, Li Y, Wang Y S, Li P D, Qin Y S, Song T, Yang Y G, Chen Z Y, Gao X Y, Sun B Q 2020 ACS Energy Lett. 5 8Google Scholar

    [20]

    Wang Y, Dar M I, Luis K O, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Michael G, Zhao Y X 2019 Science 365 591Google Scholar

    [21]

    Yang Y G, Lu H Z , Feng S L, Yang L F, Dong H, Wang J O, Tian C, Li L N, Lu H L, Jeong J, Shaik M Z, Liu Y H, Michael G, Anders H 2021 Energy Environ. Sci. 6 3447Google Scholar

    [22]

    Xue J J, Wang R, Wang K L, Wang Z K, Yavuz I, Wang Y, Yang Y G, Gao X Y, Huang T Y, Nuryyeva S, Lee J W, Duan Y, Liao L S, Kaner R, Yang Y 2019 J. Am. Chem. Soc. 141 13948Google Scholar

    [23]

    Hu Q, Zhao L C, Wu J, Gao K, Luo D Y, Jiang Y F, Zhang Z Y, Zhu C H, Schaible E, Hexemer A, Wang C, Liu Y, Zhang W, Michael G, Liu F, Thomas P R, Zhu R, Gong Q H 2017 Nat. Commun. 8 15688

    [24]

    Qin M C, Tse K, Lau T, Li Y, Su C, Yang G, Chen J, Zhu J, Jeng U S, Li G, Chen H Z, Lu X H 2019 Adv. Mater. 31 1901284Google Scholar

    [25]

    Yang Y G, Yang L, Feng S L 2020 Mater. Today Adv. 6 100068Google Scholar

    [26]

    Li M, Zuo W W, Yang Y G, Aldamasy M H, Wang Q, Silver H T C, Feng S L, Michael S, Wang Z K, Antonio A 2020 ACS Energy Lett. 5 1923Google Scholar

    [27]

    Chan J H, Feng E M, Li H Y, Ding Y, Long C Y, Gao Y J, Yang Y G, Yi C Y, Zheng Z J, Yang J L 2023 Nano-Micro Lett. 15 164Google Scholar

    [28]

    McMeekin D P, Holzhey P, O Fürer S, Steven P H, Laura T S, James M B, Suhas M, Seongrok S, Nicholas H, Lu J, Michael B J, Joseph J, Udo B, Henry J S 2023 Nat. Mater. 22 73Google Scholar

    [29]

    Ye C Z, Yang J, Yao L X, Chen N Y 2001 Chin. Sci. Bull. 46 1951Google Scholar

    [30]

    王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪 2022 物理学报 71 166801Google Scholar

    Wang C L, Zhang Z L, Zhu Y F, Zhao X F, Song H W, Chen C 2022 Acta. Phys. Sin. 71 166801Google Scholar

    [31]

    Yan Y J, Yang Y G, Liang M L, Mohamed A, Tõnu P, Zheng K B, Liang Z Q 2021 Nat. Commun. 12 6603Google Scholar

    [32]

    Yu S, Meng J, Pan Q Y, Zhao Q, Tönu P, Yang Y G, Zheng K B, Liang Z Q 2022 Energy Environ. Sci. 15 3321Google Scholar

    [33]

    Yang Y G, Yang L, Feng S L, Niu Y C, Li X X, Cheng L W, Li L, Qin W, Wang T, Xu Q, Dong H, Lu H Z, Qin T S, Huang W 2023 Adv. Energy Mater. 13 2300661Google Scholar

    [34]

    Li Q, Zheng Y C, Yang S, Hou Y 2023 Chin. Sci. Bull. 68 3Google Scholar

  • 图 1  基于定制小型标准手套箱(c (H2O, O2) ~ 1×10–6)的同步辐射原位涂布成膜观测装置 (a) 原位装置布局; (b) 手套箱效果图; (c) 原位装置实物图; (d) 实时涂布

    Fig. 1.  A custom small standard glove box (c (H2O, O2< 1×10–6) of synchrotron radiation in situ slot-die film-forming observation device: (a) Schematic of in situ device; (b) glove box; (c) automatic drip system and the photo picture of in situ device object; (d) the photo picture of drip system.

    图 2  (a) 原位涂布和同步辐射观测示意图; (b)—(e) 沉积在SnO2电子传输层上的3D钙钛矿涂布60 s过程中0, 10, 30, 60 s四个时间点的原位GIWAXS图; (f)—(i) 沉积在CQDs-SnO2 电子传输层上3D钙钛矿旋涂60 s过程中0, 10, 30, 60 s四个时间点的原位GIWAXS图

    Fig. 2.  (a) In situ slot-die coating synchrotron radiation observation. (b)–(e) In situ GIWAXS patterns of 3D perovskite thin films deposited on SnO2 electron transport layer (ETL) during the slot-die coating process from 0 to 60 s: (b) 0 s; (c) 10 s; (d) 30 s; (e) 60 s. (f)–(i) In situ GIWAXS patterns of 3D perovskite thin films deposited on CQDs-SnO2 ETL during the slot-die coating process from 0 to 60 s: (f) 0 s; (g) 10 s; (h) 30 s; (i) 60 s.

    图 3  (a)—(d) 沉积在SnO2 电子传输层上的3D钙钛矿涂布60 s过程中0, 10, 30, 60 s四个时间点的原位GISAXS图; (e)—(h) 沉积在CQDs-SnO2 电子传输层上3D钙钛矿涂布60 s过程中0, 10, 30, 60 s四个时间点的原位GISAXS图; (i)—(k) 钙钛矿涂布60 s过程中0, 30, 60 s三个时间点的GISAXS一维积分数据

    Fig. 3.  (a)–(d) In situ GISAXS patterns of 3D perovskite thin films deposited on SnO2 ETL during the slot-die coating process from 0 to 60 s: (a) 0 s; (b) 10 s; (c) 30 s; (d) 60 s. (e)–(h) In situ GISAXS patterns of 3D perovskite thin films deposited on CQDs-SnO2 ETL during the slot-die coating process from 0 to 60 s: (e) 0 s; (f) 10 s; (g) 30 s; (h) 60 s. (i)–(k) 1D integrated GISAXS of 3D perovskite (Per) thin films deposited on CQDs-SnO2 ETL during the slot-die coating process: (i) 0 s; (j) 30 s; (k) 60 s.

    图 4  基于卷对卷全溶液狭缝涂布方法制备的全柔性钙钛矿太阳能电池(器件结构为PET/ITO/SnO2 ETL/3D perovskite (2MOE)/Spiro/Au) (a) SnO2 电子传输层上制备的器件; (b) CQDs-SnO2 电子传输层上制备的器件, 单个器件有效面积为~15 cm2; (c)大面积全柔性3D钙钛矿太阳能电池

    Fig. 4.  Fully roll-to-roll (R2R) slot-die printed flexible perovskite solar cells with device structure of PET/ITO/SnO2 ETL/3D perovskite (2MOE)/Spiro/Au: (a) Prepared on the SnO2 electron transport layer and (b) prepared on CQDs-SnO2 electron transport layer, with an effective area of ~15 cm2 per unit cell; (c) the printed flexible perovskite solar cells with device structure of PET/ITO/SnO2 ETL/3D perovskite (2MOE)/Spiro/Au.

  • [1]

    Ajay K J, Ashish K, Tsutomu M 2019 Chem. Rev. 119 3036Google Scholar

    [2]

    https://www.nrel.gov/pv/cell-efficiency.html [2023-11-22]

    [3]

    Han T H, Tan S, Xue J J, Meng L, Lee J W, Yang Y 2019 Adv. Mater. 31 1803515Google Scholar

    [4]

    Luo D Y, Su R, Zhang W, Gong Q H, Zhu R 2020 Nat. Rev. Mater. 5 44

    [5]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [6]

    Zhang H, Wang H, Williams S, Xiong D H, Zhang W J, Chueh C C, Chen W, Alex K J 2017 Adv. Mater. 29 1606608Google Scholar

    [7]

    Yang Y, Feng S L, Xu W D, Li M, Li L, Zhang X M, Ji G W, Zhang X N, Wang Z K, Xiong Y M, Cao L, Sun B Q, Gao X Y 2017 ACS Appl. Mater. interfaces 9 23141Google Scholar

    [8]

    Li F C, Yuan J Y, Ling X, Zhang Y, Yang Y G, Cheun S H, Carr H, Gao X F, Ma W L 2018 Adv. Funct. Mater. 28 1706377Google Scholar

    [9]

    Li H, Zuo C T, Angmo D, Weerasinghe H, Gao M, Yang J L 2022 Nano-Micro Lett. 14 79Google Scholar

    [10]

    Tan H, Jain A, Voznyy O, Lan X, Arquer F P, Fan J, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [11]

    Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W 2020 Adv. Mater. 32 1906374Google Scholar

    [12]

    Wang Z K, Gong X, Li M, Hu Y, Wang J M, Ma H, Liao L S 2016 ACS Nano 10 5479Google Scholar

    [13]

    Feng S L, Yang Y G, Li M, Wang J M, Cheng Z, Li J, Ji G W, Yin G Z, Song F, Wang Z K, Li J, Gao X Y 2016 ACS appl. Mater. Interfaces 8 14503Google Scholar

    [14]

    Wang Y, Zhang T Y, Kan M, Zhao Y 2018 J. Am. Chem. Soc. 140 12345Google Scholar

    [15]

    Yang Y G, Feng S L, Li M, Li F C, Zhang C C, Han Y J, Li L, Yuan J, Cao L, Wang Z K, Sun B Q, Gao X Y 2018 Nano Energy 48 10Google Scholar

    [16]

    Yang Y, Yang M J, David T M, Yan Y, Miller E M, Zhu K, Beard M C 2017 Nat. Energy 2 16207Google Scholar

    [17]

    Yang Y G, Feng S L, Li M, Xu W D, Yin G Z, Wang Z K, Sun B Q, Gao X Y 2017 Sci. Rep. 7 46724Google Scholar

    [18]

    杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇 2017 物理学报 66 018401Google Scholar

    Yang Y G, Yin G Z, Feng S L, Li M, Ji G W, Song F, Wen W, Gao X Y 2017 Acta Phys. Sin. 66 018401Google Scholar

    [19]

    Kuai L, Li J N, Li Y, Wang Y S, Li P D, Qin Y S, Song T, Yang Y G, Chen Z Y, Gao X Y, Sun B Q 2020 ACS Energy Lett. 5 8Google Scholar

    [20]

    Wang Y, Dar M I, Luis K O, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Michael G, Zhao Y X 2019 Science 365 591Google Scholar

    [21]

    Yang Y G, Lu H Z , Feng S L, Yang L F, Dong H, Wang J O, Tian C, Li L N, Lu H L, Jeong J, Shaik M Z, Liu Y H, Michael G, Anders H 2021 Energy Environ. Sci. 6 3447Google Scholar

    [22]

    Xue J J, Wang R, Wang K L, Wang Z K, Yavuz I, Wang Y, Yang Y G, Gao X Y, Huang T Y, Nuryyeva S, Lee J W, Duan Y, Liao L S, Kaner R, Yang Y 2019 J. Am. Chem. Soc. 141 13948Google Scholar

    [23]

    Hu Q, Zhao L C, Wu J, Gao K, Luo D Y, Jiang Y F, Zhang Z Y, Zhu C H, Schaible E, Hexemer A, Wang C, Liu Y, Zhang W, Michael G, Liu F, Thomas P R, Zhu R, Gong Q H 2017 Nat. Commun. 8 15688

    [24]

    Qin M C, Tse K, Lau T, Li Y, Su C, Yang G, Chen J, Zhu J, Jeng U S, Li G, Chen H Z, Lu X H 2019 Adv. Mater. 31 1901284Google Scholar

    [25]

    Yang Y G, Yang L, Feng S L 2020 Mater. Today Adv. 6 100068Google Scholar

    [26]

    Li M, Zuo W W, Yang Y G, Aldamasy M H, Wang Q, Silver H T C, Feng S L, Michael S, Wang Z K, Antonio A 2020 ACS Energy Lett. 5 1923Google Scholar

    [27]

    Chan J H, Feng E M, Li H Y, Ding Y, Long C Y, Gao Y J, Yang Y G, Yi C Y, Zheng Z J, Yang J L 2023 Nano-Micro Lett. 15 164Google Scholar

    [28]

    McMeekin D P, Holzhey P, O Fürer S, Steven P H, Laura T S, James M B, Suhas M, Seongrok S, Nicholas H, Lu J, Michael B J, Joseph J, Udo B, Henry J S 2023 Nat. Mater. 22 73Google Scholar

    [29]

    Ye C Z, Yang J, Yao L X, Chen N Y 2001 Chin. Sci. Bull. 46 1951Google Scholar

    [30]

    王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪 2022 物理学报 71 166801Google Scholar

    Wang C L, Zhang Z L, Zhu Y F, Zhao X F, Song H W, Chen C 2022 Acta. Phys. Sin. 71 166801Google Scholar

    [31]

    Yan Y J, Yang Y G, Liang M L, Mohamed A, Tõnu P, Zheng K B, Liang Z Q 2021 Nat. Commun. 12 6603Google Scholar

    [32]

    Yu S, Meng J, Pan Q Y, Zhao Q, Tönu P, Yang Y G, Zheng K B, Liang Z Q 2022 Energy Environ. Sci. 15 3321Google Scholar

    [33]

    Yang Y G, Yang L, Feng S L, Niu Y C, Li X X, Cheng L W, Li L, Qin W, Wang T, Xu Q, Dong H, Lu H Z, Qin T S, Huang W 2023 Adv. Energy Mater. 13 2300661Google Scholar

    [34]

    Li Q, Zheng Y C, Yang S, Hou Y 2023 Chin. Sci. Bull. 68 3Google Scholar

  • [1] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [2] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [3] 王继光, 李珑玲, 邱嘉图, 陈许敏, 曹东兴. 钙钛矿超晶格材料界面二维电子气的调控. 物理学报, 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [4] 王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华. 铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能. 物理学报, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [5] 陈许敏, 叶盼, 王继光, 霍德璇, 曹东兴. 钙钛矿超晶格SrTiO3/BaTiO3的挠曲电效应. 物理学报, 2022, 71(20): 206302. doi: 10.7498/aps.71.20220988
    [6] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [7] 李佳, 房奇, 罗炳池, 周民杰, 李恺, 吴卫东. Be薄膜应力的X射线掠入射侧倾法分析. 物理学报, 2013, 62(14): 140701. doi: 10.7498/aps.62.140701
    [8] 李彦波, 刘曦, 李正华, 付煜, 卡姆津·阿·谢, 魏福林, 杨正. 界面对Fe65Co35薄膜微结构和软磁性的影响. 物理学报, 2009, 58(11): 7972-7976. doi: 10.7498/aps.58.7972
    [9] 李 倩, 王之国, 刘 甦, 邢钟文, 刘 楣. 钙钛矿结构Pr1-xCaxMnO3薄膜中电脉冲诱导电阻值变化的理论研究. 物理学报, 2007, 56(3): 1637-1642. doi: 10.7498/aps.56.1637
    [10] 潘志云, 孙治湖, 谢 治, 闫文盛, 韦世强. Si/Gen/Si(001)异质结薄膜的掠入射荧光X射线吸收精细结构研究. 物理学报, 2007, 56(6): 3344-3349. doi: 10.7498/aps.56.3344
    [11] 严资杰, 袁 孝, 徐业彬, 高国棉, 陈长乐. 室温下Pr0.7Ca0.3MnO3薄膜的瞬态光响应特性. 物理学报, 2007, 56(10): 6080-6083. doi: 10.7498/aps.56.6080
    [12] 周炳卿, 刘丰珍, 朱美芳, 谷锦华, 周玉琴, 刘金龙, 董宝中, 李国华, 丁 琨. 利用x射线小角散射技术研究微晶硅薄膜的微结构. 物理学报, 2005, 54(5): 2172-2175. doi: 10.7498/aps.54.2172
    [13] 赵辉, 杜志伟, 周铁涛, 刘培英, 董宝中, 陈昌麒. Al-Zn-Mg-Cu-Li合金时效过程微结构演化的小角x射线散射研究. 物理学报, 2004, 53(4): 1251-1254. doi: 10.7498/aps.53.1251
    [14] 汪世林, 陈长乐, 王跃龙, 金克新, 王永仓, 任 韧, 宋宙模, 袁 孝. La2/3Ca1/3MnO3薄膜的光致电阻率变化特性. 物理学报, 2004, 53(2): 587-591. doi: 10.7498/aps.53.587
    [15] 李智强, 陆夏莲, 陈敏, 何山, 李景德. 钙钛矿结构中的简谐子软模. 物理学报, 2002, 51(7): 1581-1585. doi: 10.7498/aps.51.1581
    [16] 连贵君, 李美亚, 康晋峰, 郭建东, 孙云峰, 熊光成. 钙钛矿结构氧化物薄膜 的外延生长. 物理学报, 1999, 48(10): 1917-1922. doi: 10.7498/aps.48.1917
    [17] 杨平雄, 邓红梅, 褚君浩. 层状钙钛矿结构铁电薄膜SrBi2Ta2O9的掺杂改性研究. 物理学报, 1998, 47(7): 1222-1228. doi: 10.7498/aps.47.1222
    [18] 孙可煦, 易荣清, 杨家敏, 王红斌, 马洪良, 陈正林, 黄天暄, 崔延莉, 郑志坚, 唐道源, 丁永坤, 温树槐, 江文勉, 赵永宽, 崔明启, 黎刚, 崔聪悟, 唐鄂生. 同步辐射软X射线源用于软X射线探测元件定标. 物理学报, 1997, 46(4): 650-655. doi: 10.7498/aps.46.650
    [19] 白海力, 姜恩永, 王存达, 田仁玉. 热处理Co/C软X射线多层膜的掠入射反射率增强. 物理学报, 1997, 46(4): 732-739. doi: 10.7498/aps.46.732
    [20] 王玉田, 庄岩, 江德生, 杨小平, 姜晓明, 武家杨, 修立松, 郑文莉. 双势垒超晶格结构的同步辐射及X射线双晶衍射研究. 物理学报, 1996, 45(10): 1709-1716. doi: 10.7498/aps.45.1709
计量
  • 文章访问数:  612
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-23
  • 修回日期:  2023-12-20
  • 上网日期:  2024-01-02
  • 刊出日期:  2024-03-20

/

返回文章
返回