搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向软晶格筛选的立方钙钛矿体模量可解释性描述符研究

姜锦铭 孙庆德 张卫兵

引用本文:
Citation:

面向软晶格筛选的立方钙钛矿体模量可解释性描述符研究

姜锦铭, 孙庆德, 张卫兵

Research on Descriptors for the Interpretability of Cubic Perovskite Bulk Modulus Oriented towards Soft Lattice Screening

Jinming Jiang, Qinde Sun, Wei-bing Zhang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来,软晶格被认为是钙钛矿材料实现缺陷容忍性的主要物理来源,体模量则作为晶格"软硬度"的关键衡量指标。本文针对立方钙钛矿体系,基于SISSO与VS-SISSO方法,构建了两类低维、物理可解释性强的体模量预测模型。首先,基于共价半径、熔点和体积等结构和热力学特征构建的热-结构耦合描述符模型,在测试集上实现了RMSE=7.41 GPa,R2=97.8%的良好预测性能;进一步引入电负性、原子价态与未配对电子数等电子层级特征后,构建了电子-热-结构三重耦合描述符模型,预测精度显著提升,在测试集上RMSE降至5.34 GPa,R2提升至98.35%。基于该模型,我们对超过10,000个卤族和硫族立方钙钛矿进行了高通量预测,筛选出约170种体模量位于10-20 GPa区间、与Pb-I钙钛矿相近的候选体系。研究结果为软晶格机制在无铅体系中的适用性提供了初步支持,并为高通量筛选具缺陷容忍潜力的稳定无铅钙钛矿材料提供了理论依据与数据支撑。本文数据集可在(科学数据银行)数据库https://www.scidb.cn/s/A3IBBn中访问获取。
    In recent years, soft lattices have been considered a primary physical origin of defect tolerance in lead-halide perovskite materials, with bulk modulus serving as a key indicator of lattice "softness." In this work, we focus on cubic perovskites and construct a dataset of bulk moduli for 213 compounds based on DFT calculations. A total of 138 features were compiled, including 132 statistical features extracted using the Matminer toolkit and 6 manually selected elemental descriptors. Four conventional machine learning regression models (RF, SVR, KRR, and EXR) were employed for prediction, among which the SVR model showed the best performance, achieving a test-set RMSE of 7.35 GPa and R2 of 97.86%. Feature importance analysis revealed that thermodynamic-structural features such as melting point, covalent radius, and atomic volume play dominant roles in determining bulk modulus. Based on the 12 most important features, a thermodynamic-structural coupling descriptor was constructed using the SISSO method, yielding a test-set RMSE of 7.41 GPa and R2 of 97.80%. The resulting descriptor indicates that bulk modulus is proportional to melting point and inversely proportional to atomic volume. Furthermore, the VS-SISSO method was applied by incorporating a random subset selection and iterative variable screening strategy, enabling the selection of electronic-level features such as electronegativity, valence state, and number of unpaired electrons. The resulting electronic-thermodynamic-structural coupling descriptor further improved prediction accuracy, reaching an RMSE of 5.34 GPa and R2 of 98.35% on the test set. Notably, this model effectively distinguishes chalcogen-based (divalent) from halogen-based (monovalent) perovskites in terms of their bulk moduli due to differences in valence states. Based on this model, high-throughput screening was performed on over 10,000 cubic chalcogenide and halide perovskites, identifying approximately 170 lead-free candidates with bulk moduli in the range of 10-20 GPa, comparable to Pb-I perovskites. These results provide preliminary evidence supporting the applicability of the soft-lattice mechanism in lead-free systems and offer theoretical guidance and data support for the high-throughput discovery of stable, defect-tolerant, lead-free perovskite materials.The dataset for this paper is available in the (Scientific Data Bank) database https://www.scidb.cn/s/A3IBBn.
  • [1]

    NREL. Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html[2025-5-18]

    [2]

    Yin W, Shi T, Yan Y 2014Adv. Mater. 26 4653

    [3]

    Huang J, Yuan Y, Shao Y, Yan Y 2017Nat Rev Mater 2 17042

    [4]

    Xian Y M, Wang X M, Yan Y F 2024Chinese Phys.B 33 096803(in Chinese)[冼业铭,王晓明,鄢炎发2024中国物理B 33 096803]

    [5]

    Yin W J, Shi T, Yan Y 2014Appl. Phys. Lett. 104 063903

    [6]

    Ming C, Wang H, West D, Zhang S, Sun Y Y 2022J. Mater. Chem. A 10 3018

    [7]

    Miyata K, Meggiolaro D, Trinh M T, Joshi P P, Mosconi E, Jones S C, De Angelis F, Zhu X Y 2017Sci. Adv. 3 e1701217

    [8]

    Zhu X Y, Podzorov V 2015J. Phys. Chem. Lett. 6 4758

    [9]

    Bonn M, Miyata K, Hendry E, Zhu X Y 2017ACS Energy Lett. 2 2555

    [10]

    Yang J, Wen X, Xia H, Sheng R, Ma Q, Kim J, Tapping P, Harada T, Kee T W, Huang F, Cheng Y B, Green M, Ho-Baillie A, Huang S, Shrestha S, Patterson R, Conibeer G 2017Nat Commun 8 14120

    [11]

    Chu W, Zheng Q, Prezhdo O V, Zhao J, Saidi W A 2020Sci. Adv. 6 eaaw7453

    [12]

    Chu W, Saidi W A, Zhao J, Prezhdo O V 2020Angew Chem Int Ed 59 6435

    [13]

    Wu X W, Ming C, Shi J, Wang H, West D, Zhang S B, Sun Y Y 2022Chinese Phys. Lett. 39 046101(in Chinese)[吴晓维,明辰,石晶,王涵,Damien West,张绳百,孙宜阳2022中国物理快报39 046101]

    [14]

    Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017J. Am. Chem. Soc. 139 2630

    [15]

    Sun Q, Wang J, Yin W, Yan Y 2018Adv. Mater. 30 1705901

    [16]

    Sun Q, Yin W J, Wei S H 2020J. Mater. Chem. C 8 12012

    [17]

    Ghorpade U V, Suryawanshi M P, Green M A, Wu T, Hao X, Ryan K M 2023Chem. Rev. 123 327

    [18]

    Yu Y, An Z D, Cai X Y, Guo M L, Jing C B, Li Y Q 2021Acta Phys.Sin. 70 048503(in Chinese)[余毅,安治东,蔡晓艺,郭明磊,敬承斌,李艳青2021物理学报70 048503]

    [19]

    Dunn A, Wang Q, Ganose A, Dopp D, Jain A 2020npj Comput.Mater.6 138

    [20]

    Geurts P, Ernst D, Wehenkel L 2006Mach Learn 63 3

    [21]

    Chen T, Guestrin C 2016 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Francisco California USA pp785-794

    [22]

    Hancock J T, Khoshgoftaar T M 2020J Big Data 7 94

    [23]

    De Breuck P P, Hautier G, Rignanese G M 2021npj Comput.Mater.7 83

    [24]

    Wang A Y T, Kauwe S K, Murdock R J, Sparks T D 2021npj Comput Mater 7 77

    [25]

    Xie T, Grossman J C 2018Phys. Rev. Lett. 120 145301

    [26]

    Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A, Müller K R 2018J. Chem. Phys. 148 241722

    [27]

    Chen C, Ye W, Zuo Y, Zheng C, Ong S P 2019Chem. Mater. 31 3564

    [28]

    Choudhary K, DeCost B 2021npj Comput Mater 7 185

    [29]

    Gasteiger J, Giri S, Margraf J T, Günnemann S 2020 arXiv:2206.13578[cs.LG]

    [30]

    Guerrero P, Hašan M, Sunkavalli K, Měch R, Boubekeur T, Mitra N J 2022ACM Trans. Graph. 41 1

    [31]

    Ruff R, Reiser P, Stühmer J, Friederich P 2024Digit. Discov. 3 594

    [32]

    Ong S P, Cholia S, Jain A, Brafman M, Gunter D, Ceder G, Persson K A 2015Comput. Mater. Sci. 97 209

    [33]

    Akinpelu S B, Abolade S A, Okafor E, Obada D O, Ukpong A M, Kumar R. S, Healy J, Akande A 2024Res. Phys. 65 107978

    [34]

    Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli L M 2018Phys. Rev. Materials 2 083802

    [35]

    Guo Z, Hu S, Han Z K, Ouyang R 2022J. Chem. Theory Comput. 18 4945

    [36]

    Roy P B, Roy S B 2005J. Phys.:Condens. Matter 17 6193

    [37]

    Heyd J, Peralta J E, Scuseria G E, Martin R L 2005J. Chem. Phys. 123 174101

    [38]

    Kresse G, Furthmüller J 1996Phys. Rev. B 54 11169

    [39]

    Ward L, Dunn A, Faghaninia A, Zimmermann N E R, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I, Jain A 2018Comput. Mater. Sci. 152 60

    [40]

    Fabian P, Gaël V, Alexandre G, Vincent M, Bertrand T, Olivier G, Mathieu B, Peter P, Ron W, Vincent D, Jake V, Alexandre P, David C, Matthieu B, Matthieu P, Duchesnay É 2011J. Mach. Learn. Res. 12 2825

    [41]

    Benesty J, Chen J, Huang Y, Cohen I 2009 Pearson Correlation Coefficient (Berlin:Springer) pp1−4

    [42]

    Cohen M L 1993Science 261 307

    [43]

    Guo Z, Wang J, Yin W J 2022Energy Environ. Sci. 15 660

    [44]

    Verma A S, Kumar A 2012J. Alloy. Comp. 541 210

  • [1] 冯继雨, 刘敏, 屈正国, 赵东楠, 李道鹏, 史同飞. 光谱稳定的混合卤素蓝光钙钛矿LED设计. 物理学报, doi: 10.7498/aps.74.20250297
    [2] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, doi: 10.7498/aps.73.20240827
    [3] 杨迎国, 冯尚蕾, 李丽娜. 溶液法原位大面积制备钙钛矿光电薄膜成膜的同步辐射可视化结晶过程研究. 物理学报, doi: 10.7498/aps.73.20231847
    [4] 魏浩铭, 张颖, 张宙, 吴仰晴, 曹丙强. 极性补偿对LaMnO3/LaNiO3超晶格交换偏置场强度的影响. 物理学报, doi: 10.7498/aps.71.20220365
    [5] 李斌, 苗向阳. 单个CsPbBr3钙钛矿量子点的荧光闪烁特性. 物理学报, doi: 10.7498/aps.70.20210908
    [6] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器. 物理学报, doi: 10.7498/aps.70.20201302
    [7] 郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞. 异质结构在光伏型卤化物钙钛矿光电转换器件中的应用. 物理学报, doi: 10.7498/aps.69.20200591
    [8] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, doi: 10.7498/aps.69.20200755
    [9] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, doi: 10.7498/aps.69.20191767
    [10] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, doi: 10.7498/aps.69.20200566
    [11] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响. 物理学报, doi: 10.7498/aps.68.20190675
    [12] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, doi: 10.7498/aps.68.20190647
    [13] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, doi: 10.7498/aps.68.20190302
    [14] 宋蕊, 冯凯, 林上金, 何曼丽, 仝亮. 钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控. 物理学报, doi: 10.7498/aps.68.20190573
    [15] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, doi: 10.7498/aps.68.20190942
    [16] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, doi: 10.7498/aps.67.20180936
    [17] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, doi: 10.7498/aps.65.237101
    [18] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, doi: 10.7498/aps.64.038404
    [19] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, doi: 10.7498/aps.62.049101
    [20] 向 军, 李莉萍, 苏文辉. 钙钛矿型氧离子导体KNb1-xMgxO3-δ的制备和表征. 物理学报, doi: 10.7498/aps.52.1474
计量
  • 文章访问数:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-18

/

返回文章
返回