搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向软晶格筛选的立方钙钛矿体模量可解释性描述符研究

姜锦铭 孙庆德 张卫兵

引用本文:
Citation:

面向软晶格筛选的立方钙钛矿体模量可解释性描述符研究

姜锦铭, 孙庆德, 张卫兵
cstr: 32037.14.aps.74.20250652

Descriptors for the interpretability of cubic perovskite bulk modulus oriented towards soft lattice screening

JIANG Jinming, SUN Qingde, ZHANG Weibing
cstr: 32037.14.aps.74.20250652
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 近年来, 软晶格被认为是钙钛矿材料实现缺陷容忍性的主要物理来源, 体模量则作为晶格“软硬度”的关键衡量指标. 本文针对立方钙钛矿体系, 基于SISSO (sure independence screening and sparsifying operator)与VS-SISSO (集成迭代变量选择机制的SISSO框架)方法, 构建了两类低维、物理可解释性强的体模量预测模型. 首先, 基于共价半径、熔点和体积等结构和热力学特征构建的热-结构耦合描述符模型, 在测试集上实现了均方根误差RMSE = 7.41 GPa, 决定系数R2 = 97.8% 的良好预测性能; 进一步引入电负性、原子价态与未配对电子数等电子层级特征后, 构建了电子-热-结构三重耦合描述符模型, 预测精度显著提升, 在测试集上RMSE降至5.34 GPa, R2提升至98.35%. 基于该模型, 本文对超过10000个卤族和硫族立方钙钛矿进行高通量预测, 筛选出约170种体模量位于10—20 GPa区间、与Pb-I钙钛矿相近的候选体系. 研究结果为软晶格机制在无铅体系中的适用性提供了初步支持, 并为高通量筛选具缺陷容忍潜力的稳定无铅钙钛矿材料提供了理论依据与数据支撑. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00161中访问获取.
    In recent years, soft lattices have been considered a primary physical origin of defect tolerance in lead-halide perovskite materials, with bulk modulus serving as a key indicator of lattice “softness”. This work focuses on cubic perovskites and constructing a dataset of bulk moduli for 213 compounds based on density functional theory (DFT) calculations. A total of 138 features are compiled, including 132 statistical features extracted using the Matminer toolkit and 6 manually selected elemental descriptors. Four conventional machine learning regression models (RF, SVR, KRR, and EXR) are employed for prediction. Of them, the SVR model shows the best performance, achieving a test-set Root Mean Square Error (RMSE) of 7.35 GPa and Coefficient of Determination (R2) of 97.86%. Feature importance analysis reveals that thermodynamic-structural features such as melting point, covalent radius, and atomic volume play dominant roles in determining bulk modulus. Based on the 12 most important features, a thermodynamic-structural coupling descriptor is constructed using the SISSO method, yielding a test-set RMSE of 7.41 GPa and R2 of 97.80%. The resulting descriptor indicates that the bulk modulus is proportional to melting point and inversely proportional to atomic volume. Furthermore, the VS-SISSO method combined with a random subset selection and iterative variable screening strategy is used, enabling the selection of electronic-level features such as electronegativity, valence state, and number of unpaired electrons. The resulting electronic-thermodynamic-structural coupling descriptor further improves the prediction accuracy, reaching an RMSE of 5.34 GPa and R2 of 98.35% on the test set. Notably, due to the difference in valence states, this model effectively distinguishes between the bulk moduli of chalcogen-based (divalent) and halogen-based (monovalent) perovskites. Based on this model, high-throughput screening is performed on over 10000 cubic chalcogenides and halide perovskites, and approximately 170 lead-free candidates with bulk moduli in the range of 10–20 GPa are identified, which are comparable to Pb-I perovskites. These results provide preliminary evidence for supporting the applicability of the soft-lattice mechanism in lead-free systems and offer theoretical guidance and data support for the high-throughput discovery of stable, defect-tolerant, lead-free perovskite materials. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb. j00213.00161.
      通信作者: 孙庆德, qingdesun@csust.edu.cn ; 张卫兵, zhangwb@csust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12474219)和湖南省自然科学基金(批准号: 2023JJ40041)资助的课题.
      Corresponding author: SUN Qingde, qingdesun@csust.edu.cn ; ZHANG Weibing, zhangwb@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12474219) and the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ40041).
    [1]

    NREL. Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html [2025-05-18]

    [2]

    Yin W, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [3]

    Huang J, Yuan Y, Shao Y, Yan Y 2017 Nat Rev Mater 2 17042Google Scholar

    [4]

    Xian Y M, Wang X M, Yan Y F 2024 Chin. Phys. B 33 096803Google Scholar

    [5]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [6]

    Ming C, Wang H, West D, Zhang S, Sun Y Y 2022 J. Mater. Chem. A 10 3018Google Scholar

    [7]

    Miyata K, Meggiolaro D, Trinh M T, Joshi P P, Mosconi E, Jones S C, De Angelis F, Zhu X Y 2017 Sci. Adv. 3 e1701217Google Scholar

    [8]

    Zhu X Y, Podzorov V 2015 J. Phys. Chem. Lett. 6 4758Google Scholar

    [9]

    Bonn M, Miyata K, Hendry E, Zhu X Y 2017 ACS Energy Lett. 2 2555Google Scholar

    [10]

    Yang J F, Wen X M, Xia H Z, Sheng R, Ma Q S, Kim J, Tapping P, Harada T, Kee T W, Huang F Z, Cheng Y B, Green M, Ho-Baillie A, Huang S J, Shrestha S, Patterson R, Conibeer G 2017 Nat. Commun. 8 14120Google Scholar

    [11]

    Chu W B, Zheng Q J, Prezhdo O V, Zhao J, Saidi W A 2020 Sci. Adv. 6 eaaw7453Google Scholar

    [12]

    Chu W B, Saidi W A, Zhao J, Prezhdo O V 2020 Angew Chem Int Ed 59 6435Google Scholar

    [13]

    Wu X W, Ming C, Shi J, Wang H, West D, Zhang S B, Sun Y Y 2022 Chin. Phys. Lett. 39 046101Google Scholar

    [14]

    Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017 J. Am. Chem. Soc. 139 2630Google Scholar

    [15]

    Sun Q D, Wang J, Yin W J, Yan Y F 2018 Adv. Mater. 30 1705901Google Scholar

    [16]

    Sun Q, Yin W J, Wei S H 2020 J. Mater. Chem. C 8 12012Google Scholar

    [17]

    Ghorpade U V, Suryawanshi M P, Green M A, Wu T, Hao X, Ryan K M 2023 Chem. Rev. 123 327Google Scholar

    [18]

    余毅, 安治东, 蔡晓艺, 郭明磊, 敬承斌, 李艳青 2021 物理学报 70 048503Google Scholar

    Yu Y, An Z D, Cai X Y, Guo M L, Jing C B, Li Y Q 2021 Acta Phys. Sin. 70 048503Google Scholar

    [19]

    Dunn A, Wang Q, Ganose A, Dopp D, Jain A 2020 npj Comput. Mater. 6 138Google Scholar

    [20]

    Geurts P, Ernst D, Wehenkel L 2006 Mach Learn 63 3Google Scholar

    [21]

    Chen T, Guestrin C 2016 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Francisco California USA pp785–794

    [22]

    Hancock J T, Khoshgoftaar T M 2020 J. Big Data 7 94Google Scholar

    [23]

    De Breuck P P, Hautier G, Rignanese G M 2021 npj Comput. Mater. 7 83Google Scholar

    [24]

    Wang A Y T, Kauwe S K, Murdock R J, Sparks T D 2021 npj Comput. Mater. 7 77Google Scholar

    [25]

    Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301Google Scholar

    [26]

    Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A, Müller K R 2018 J. Chem. Phys. 148 241722Google Scholar

    [27]

    Chen C, Ye W, Zuo Y, Zheng C, Ong S P 2019 Chem. Mater. 31 3564Google Scholar

    [28]

    Choudhary K, DeCost B 2021 npj Comput. Mater. 7 185Google Scholar

    [29]

    Gasteiger J, Giri S, Margraf J T, Günnemann S 2020 arXiv: 2206.13578 [cs. LG]

    [30]

    Guerrero P, Hašan M, Sunkavalli K, Měch R, Boubekeur T, Mitra N J 2022 ACM Trans. Graph. 41 1

    [31]

    Ruff R, Reiser P, Stühmer J, Friederich P 2024 Digit. Discov. 3 594Google Scholar

    [32]

    Ong S P, Cholia S, Jain A, Brafman M, Gunter D, Ceder G, Persson K A 2015 Comput. Mater. Sci. 97 209Google Scholar

    [33]

    Akinpelu S B, Abolade S A, Okafor E, Obada D O, Ukpong A M, Kumar R. S, Healy J, Akande A 2024 Res. Phys. 65 107978

    [34]

    Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli L M 2018 Phys. Rev. Mater. 2 083802Google Scholar

    [35]

    Guo Z, Hu S, Han Z K, Ouyang R 2022 J. Chem. Theory Comput. 18 4945Google Scholar

    [36]

    Roy P B, Roy S B 2005 J. Phys.: Condens. Matter 17 6193Google Scholar

    [37]

    Heyd J, Peralta J E, Scuseria G E, Martin R L 2005 J. Chem. Phys. 123 174101Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [39]

    Ward L, Dunn A, Faghaninia A, Zimmermann N E R, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I, Jain A 2018 Comput. Mater. Sci. 152 60Google Scholar

    [40]

    Fabian P, Gaël V, Alexandre G, Vincent M, Bertrand T, Olivier G, Mathieu B, Peter P, Ron W, Vincent D, Jake V, Alexandre P, David C, Matthieu B, Matthieu P, Duchesnay É 2011 J. Mach. Learn. Res. 12 2825

    [41]

    Benesty J, Chen J, Huang Y, Cohen I 2009 Pearson Correlation Coefficient (Berlin: Springer) pp1–4

    [42]

    Cohen M L 1993 Science 261 307Google Scholar

    [43]

    Guo Z, Wang J, Yin W J 2022 Energy Environ. Sci. 15 660Google Scholar

    [44]

    Verma A S, Kumar A 2012 J. Alloy. Comp. 541 210Google Scholar

  • 图 1  (a) 卤族立方钙钛矿包括典型的单钙钛矿ABX3 (B = M2+)和双钙钛矿A2B1B2X6 (B1 = M+, B2 = M3+); (b) 硫族立方钙钛矿包括ABY3 (B = M4+)型单钙钛矿和A2B1B2Y6 (B1 = M3+, B2 = M5+)型双钙钛矿; 图中展示了数据集中213个钙钛矿的元素组成分布, 其中双色半圆表示该元素既可作为A位也可作为B位

    Fig. 1.  (a) Halide cubic perovskites include typical ABX3-type single perovskites (B = M2+) and A2B1B2X6-type double perovskites (B1 = M+, B2 = M3+); (b) chalcogenide cubic perovskites include ABY3-type single perovskites (B = M4+) and A2B1B2Y6-type double perovskites (B1 = M3+, B2 = M5+); the figure summarizes the elemental composition of 213 cubic perovskites in the dataset. Dual-colored semicircles indicate elements that can occupy both A and B sites.

    图 2  各机器学习模型预测值与真实值的对比图 (a) 随机森林; (b) 支持向量回归; (c) 核岭回归; (d) 极端随机树; 红色点和蓝色三角形分别表示训练集和测试集数据, 虚线表示理想预测线y = x

    Fig. 2.  Comparison between predicted and calculated bulk modulus for different machine learning models: (a) Random forest (RF); (b) support vector regression (SVR); (c) kernel ridge regression (KRR); (d) extremely random trees (EXT); red dots and blue triangles correspond to the training and testing datasets, respectively, while the dashed line represents the ideal prediction (y = x).

    图 3  (a) 基于支持向量回归模型的特征重要性排序; (b) 特征之间的皮尔逊相关系数热图

    Fig. 3.  (a) Feature importance ranking based on the support vector regression (SVR) model; (b) Pearson correlation coefficients between features.

    图 4  (a) VS-SISSO (三轮独立训练)与$ d_{{\text{B-X}}}^{ - {4}} $, SISSO所构建体模量描述符的预测RMSE对比; (b)—(d) 3种不同模型的预测结果对比图, 其中(b)为使用$ d_{{\text{B-X}}}^{ - {4}} $描述符的拟合结果, (c)为使用SISSO构建的热-结构耦合描述符的拟合结果, (d)为使用VS-SISSO构建的电子-热-结构三重耦合描述符的拟合结果; 横轴表示DFT计算所得体模量, 纵轴为模型预测值; 蓝色点表示卤族钙钛矿, 红色点表示硫族钙钛矿

    Fig. 4.  (a) Comparison of prediction RMSE among the VS-SISSO (three independent trainings), the $ d_{{\text{B-X}}}^{ - {4}} $ descriptor, and the SISSO-derived descriptor; (b)–(d)comparison of predicted vs. DFT-calculated bulk modulus using three different models, (b) the $ d_{{\text{B-X}}}^{ - {4}} $ descriptor, (c) the SISSO-derived thermo-structural descriptor, (d) the VS-SISSO-derived electronic-thermo-structural descriptor; the x-axis represents the bulk modulus obtained from DFT, and the y-axis indicates model predictions; blue dots denote halide perovskites, while red dots represent chalcogenide perovskites.

    表 1  各类机器学习模型参数设置

    Table 1.  Machine learning model parameters.

    模型 参数设置
    RF n_estimators=200, max_features=“auto”, bootstrap=True
    SVR kernel=“rbf”, C=497, gamma=0.01
    KRR kernel=“poly”, alpha=0.01
    EXT n_estimators=110, max_features=“auto”
    下载: 导出CSV

    表 2  SISSO与VS-SISSO参数设置

    Table 2.  Parameters for SISSO and VS-SISSO.

    参数名称 设置值 说明
    desc_dim 1 描述符维度
    ptype 1 回归任务
    opset 11 运算符: (+)(–)(*)(/)(exp)(exp)
    (^(–1))(^2)(sqrt)(log)(|–|)
    ntask 1 任务数(无任务划分)
    nsample 213 样本数
    nsf 12 特征总数上限
    fcomplexity 6 最大选中特征数
    subs_sis 10000 SIS阶段筛选特征子集
    method “L0” 稀疏回归方法
    metric “RMSE” 评价指标
    nm_output 100 最终模型输出数量
    Sa 4 随机子集维数 (VS-SISSO)
    max_iter 200 最大迭代次数 (VS-SISSO)
    下载: 导出CSV

    表 3  各模型性能评估结果

    Table 3.  Evaluation results of different models.

    RFSVRKRREXT
    MAE/GPa3.793.544.894.27
    RMSE/GPa8.427.3510.8811.00
    R2/%97.2097.8695.3195.22
    CV-MAE/GPa3.093.083.962.70
    CV-RMSE/GPa9.048.3711.3613.47
    CV-R2/%95.3696.8695.4095.39
    下载: 导出CSV

    表 4  SISSO模型的输入特征及其含义

    Table 4.  Input features and their meanings in the SISSO model.

    特征名称含义特征名称含义
    meanMT平均熔点meanGSV平均基态高斯体积
    modeMT众数熔点meanSGN平均空间群数
    modeAW众数原子质量avgAW原子质量的平均偏差
    minGSV最小基态
    晶胞体积
    minN最小原子序数
    maxCR最大共价半径ranN原子序数极差
    ranCR共价半径极差meanMN平均门捷列夫序数
    下载: 导出CSV
  • [1]

    NREL. Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html [2025-05-18]

    [2]

    Yin W, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [3]

    Huang J, Yuan Y, Shao Y, Yan Y 2017 Nat Rev Mater 2 17042Google Scholar

    [4]

    Xian Y M, Wang X M, Yan Y F 2024 Chin. Phys. B 33 096803Google Scholar

    [5]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [6]

    Ming C, Wang H, West D, Zhang S, Sun Y Y 2022 J. Mater. Chem. A 10 3018Google Scholar

    [7]

    Miyata K, Meggiolaro D, Trinh M T, Joshi P P, Mosconi E, Jones S C, De Angelis F, Zhu X Y 2017 Sci. Adv. 3 e1701217Google Scholar

    [8]

    Zhu X Y, Podzorov V 2015 J. Phys. Chem. Lett. 6 4758Google Scholar

    [9]

    Bonn M, Miyata K, Hendry E, Zhu X Y 2017 ACS Energy Lett. 2 2555Google Scholar

    [10]

    Yang J F, Wen X M, Xia H Z, Sheng R, Ma Q S, Kim J, Tapping P, Harada T, Kee T W, Huang F Z, Cheng Y B, Green M, Ho-Baillie A, Huang S J, Shrestha S, Patterson R, Conibeer G 2017 Nat. Commun. 8 14120Google Scholar

    [11]

    Chu W B, Zheng Q J, Prezhdo O V, Zhao J, Saidi W A 2020 Sci. Adv. 6 eaaw7453Google Scholar

    [12]

    Chu W B, Saidi W A, Zhao J, Prezhdo O V 2020 Angew Chem Int Ed 59 6435Google Scholar

    [13]

    Wu X W, Ming C, Shi J, Wang H, West D, Zhang S B, Sun Y Y 2022 Chin. Phys. Lett. 39 046101Google Scholar

    [14]

    Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017 J. Am. Chem. Soc. 139 2630Google Scholar

    [15]

    Sun Q D, Wang J, Yin W J, Yan Y F 2018 Adv. Mater. 30 1705901Google Scholar

    [16]

    Sun Q, Yin W J, Wei S H 2020 J. Mater. Chem. C 8 12012Google Scholar

    [17]

    Ghorpade U V, Suryawanshi M P, Green M A, Wu T, Hao X, Ryan K M 2023 Chem. Rev. 123 327Google Scholar

    [18]

    余毅, 安治东, 蔡晓艺, 郭明磊, 敬承斌, 李艳青 2021 物理学报 70 048503Google Scholar

    Yu Y, An Z D, Cai X Y, Guo M L, Jing C B, Li Y Q 2021 Acta Phys. Sin. 70 048503Google Scholar

    [19]

    Dunn A, Wang Q, Ganose A, Dopp D, Jain A 2020 npj Comput. Mater. 6 138Google Scholar

    [20]

    Geurts P, Ernst D, Wehenkel L 2006 Mach Learn 63 3Google Scholar

    [21]

    Chen T, Guestrin C 2016 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Francisco California USA pp785–794

    [22]

    Hancock J T, Khoshgoftaar T M 2020 J. Big Data 7 94Google Scholar

    [23]

    De Breuck P P, Hautier G, Rignanese G M 2021 npj Comput. Mater. 7 83Google Scholar

    [24]

    Wang A Y T, Kauwe S K, Murdock R J, Sparks T D 2021 npj Comput. Mater. 7 77Google Scholar

    [25]

    Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301Google Scholar

    [26]

    Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A, Müller K R 2018 J. Chem. Phys. 148 241722Google Scholar

    [27]

    Chen C, Ye W, Zuo Y, Zheng C, Ong S P 2019 Chem. Mater. 31 3564Google Scholar

    [28]

    Choudhary K, DeCost B 2021 npj Comput. Mater. 7 185Google Scholar

    [29]

    Gasteiger J, Giri S, Margraf J T, Günnemann S 2020 arXiv: 2206.13578 [cs. LG]

    [30]

    Guerrero P, Hašan M, Sunkavalli K, Měch R, Boubekeur T, Mitra N J 2022 ACM Trans. Graph. 41 1

    [31]

    Ruff R, Reiser P, Stühmer J, Friederich P 2024 Digit. Discov. 3 594Google Scholar

    [32]

    Ong S P, Cholia S, Jain A, Brafman M, Gunter D, Ceder G, Persson K A 2015 Comput. Mater. Sci. 97 209Google Scholar

    [33]

    Akinpelu S B, Abolade S A, Okafor E, Obada D O, Ukpong A M, Kumar R. S, Healy J, Akande A 2024 Res. Phys. 65 107978

    [34]

    Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli L M 2018 Phys. Rev. Mater. 2 083802Google Scholar

    [35]

    Guo Z, Hu S, Han Z K, Ouyang R 2022 J. Chem. Theory Comput. 18 4945Google Scholar

    [36]

    Roy P B, Roy S B 2005 J. Phys.: Condens. Matter 17 6193Google Scholar

    [37]

    Heyd J, Peralta J E, Scuseria G E, Martin R L 2005 J. Chem. Phys. 123 174101Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [39]

    Ward L, Dunn A, Faghaninia A, Zimmermann N E R, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I, Jain A 2018 Comput. Mater. Sci. 152 60Google Scholar

    [40]

    Fabian P, Gaël V, Alexandre G, Vincent M, Bertrand T, Olivier G, Mathieu B, Peter P, Ron W, Vincent D, Jake V, Alexandre P, David C, Matthieu B, Matthieu P, Duchesnay É 2011 J. Mach. Learn. Res. 12 2825

    [41]

    Benesty J, Chen J, Huang Y, Cohen I 2009 Pearson Correlation Coefficient (Berlin: Springer) pp1–4

    [42]

    Cohen M L 1993 Science 261 307Google Scholar

    [43]

    Guo Z, Wang J, Yin W J 2022 Energy Environ. Sci. 15 660Google Scholar

    [44]

    Verma A S, Kumar A 2012 J. Alloy. Comp. 541 210Google Scholar

  • [1] 冯继雨, 刘敏, 屈正国, 赵东楠, 李道鹏, 史同飞. 光谱稳定的混合卤素蓝光钙钛矿LED设计. 物理学报, 2025, 74(14): 148502. doi: 10.7498/aps.74.20250297
    [2] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] 杨迎国, 冯尚蕾, 李丽娜. 溶液法原位大面积制备钙钛矿光电薄膜成膜的同步辐射可视化结晶过程研究. 物理学报, 2024, 73(6): 063201. doi: 10.7498/aps.73.20231847
    [4] 魏浩铭, 张颖, 张宙, 吴仰晴, 曹丙强. 极性补偿对LaMnO3/LaNiO3超晶格交换偏置场强度的影响. 物理学报, 2022, 71(15): 156801. doi: 10.7498/aps.71.20220365
    [5] 李斌, 苗向阳. 单个CsPbBr3钙钛矿量子点的荧光闪烁特性. 物理学报, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [6] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器. 物理学报, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [7] 郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞. 异质结构在光伏型卤化物钙钛矿光电转换器件中的应用. 物理学报, 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [8] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [9] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [10] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [11] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响. 物理学报, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [12] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [13] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [14] 宋蕊, 冯凯, 林上金, 何曼丽, 仝亮. 钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控. 物理学报, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [15] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [16] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [17] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [18] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [19] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [20] 向 军, 李莉萍, 苏文辉. 钙钛矿型氧离子导体KNb1-xMgxO3-δ的制备和表征. 物理学报, 2003, 52(6): 1474-1478. doi: 10.7498/aps.52.1474
计量
  • 文章访问数:  567
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-18
  • 修回日期:  2025-07-03
  • 上网日期:  2025-07-18
  • 刊出日期:  2025-09-05

/

返回文章
返回