搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极性补偿对LaMnO3/LaNiO3超晶格交换偏置场强度的影响

魏浩铭 张颖 张宙 吴仰晴 曹丙强

引用本文:
Citation:

极性补偿对LaMnO3/LaNiO3超晶格交换偏置场强度的影响

魏浩铭, 张颖, 张宙, 吴仰晴, 曹丙强

Influence of polarity compensation on exchange bias field in LaMnO3/LaNiO3 superlattices

Wei Hao-Ming, Zhang Ying, Zhang Zhou, Wu Yang-Qing, Cao Bing-Qiang
PDF
HTML
导出引用
  • 钙钛矿超晶格中蕴含着丰富的磁现象, 特别是锰酸镧/镍酸镧超晶格中的异常磁交换偏置现象是一个研究热点. 本文采用脉冲激光沉积技术, 制备出不同取向的锰酸镧/镍酸镧超晶格, 并对超晶格的电输运性能和交换偏置现象进行了系统的研究. 实验发现, 超晶格在不同取向的衬底上外延生长并保持晶格应力; 超晶格的母体是Mott绝缘体并遵循二维Mott变程跃迁导电机理; 不同取向的超晶格都表现出交换偏置现象; 场冷和零场冷曲线表明在低温下超晶格中存在两种不同的磁性组元. 对超晶格交换场强度的进一步分析发现, 交换场强度与超晶格的取向以及超晶格与衬底界面处的极性补偿有关. 在不同温度下都观察到, 极性连续的超晶格的交换场强度都高于极性失配的超晶格. 上述研究结果对进一步理解钙钛矿超晶格中的磁电输运性能有所帮助.
    Perovskite superlattices have received enormous attention in recent years, for they possess several new phases of quantum matter. In particular, an unexpected exchange bias effect in (111)-oriented superlattices composed of ferromagnetic LaMnO3 and paramagnetic LaNiO3 is observed, which has aroused broad interest. In this work, three kinds of LaMnO3/LaNiO3 superlattices with (001), (110), and (111) out-of-plane orientation are fabricated by pulsed laser deposition, and also studied systemically. It is found that the superlattices are epitaxially grown on the SrTiO3 substrates without strain relaxation. The superlattices have a monolayer terraced structure with a surface roughness below 0.1 nm. Electrical transport measurements reveal a Mott conducting behavior with strong localization of electrons in the superlattices. All the superlattices with different orientations exhibit exchange bias phenomenon. The field cooling and zero field cooling curves indicate that there are two different magnetic components in the superlattice in a low temperature range. Further analysis of the values of exchange field reveals that the exchange bias field is related to the orientation and polarity of the superlattices. Different superlattices form different charged planes stacked along out-of-plane orientation, leading to a polarity match/mismatch at the interface between the superlattices and substrates. The surface reconstructions that act as compensating for the polar mismatch influence the exchange bias field of the superlattices. It is observed that the intensities of the exchange field of the polar-matched superlattices are higher than those of the polar-mismatched superlattices at different temperatures. These results are helpful in further understanding the magnetoelectric transport properties in the perovskite superlattices.
      通信作者: 魏浩铭, weihm@qfnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11904198, 51902179, 51872161)资助的课题.
      Corresponding author: Wei Hao-Ming, weihm@qfnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904198, 51902179, 51872161).
    [1]

    Wei H M, Yang C, Wu Y Q, Cao B Q, Lorenz M, Grundmann M 2020 J. Mater. Chem. C 8 15575Google Scholar

    [2]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [3]

    Pena M A, Fierro J L 2001 Chem. Rev. 101 1981Google Scholar

    [4]

    Cherniukh I, Raino G, Stoferle T, et al. 2021 Nature 593 535Google Scholar

    [5]

    Noguchi Y, Matsuo H 2021 Nanomaterials 11 1857Google Scholar

    [6]

    Liu Y, Siron M, Lu D, Yang J J, dos Reis R, Cui F, Gao M Y, Lai M L, Lin J, Kong Q, Lei T, Kang J, Jin J B, Ciston J, Yang P D 2019 J. Am. Chem. Soc. 141 13028Google Scholar

    [7]

    Haislmaier R C, Lapano J, Yuan Y K, Stone G, Dong Y Q, Zhou H, Alem N, Engel-Herbert R 2018 APL Mater. 6 111104Google Scholar

    [8]

    Brahlek M, Sen Gupta A, Lapano J, Roth J, Zhang H T, Zhang L, Haislmaier R, Engel-Herbert R 2018 Adv. Funct. Mater. 28 1702772Google Scholar

    [9]

    Wei H M, Jenderka M, Bonholzer M, Grundmann M, Lorenz M 2015 Appl. Phys. Lett. 106 042103Google Scholar

    [10]

    周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文 2018 物理学报 67 157505Google Scholar

    Zhou L, Wang X, Zhang H M, Shen X D, Dong S, Long Y W 2018 Acta Phys. Sin. 67 157505Google Scholar

    [11]

    Yamasaki Y, Okuyama D, Nakamura M, et al. 2011 J. Phys. Soc. Jpn. 80 073601Google Scholar

    [12]

    张鹏, 朴红光, 张英德, 黄焦宏 2021 物理学报 70 157501Google Scholar

    Zhang P, Piao H G, Zhang Y D, Huang J H 2021 Acta Phys. Sin. 70 157501Google Scholar

    [13]

    Ouellette D G, Lee S B, Son J, Stemmer S, Balents L, Millis A J, Allen S J 2010 Phys. Rev. B 82 165112Google Scholar

    [14]

    Gibert M, Zubko P, Scherwitzl T, Iniguez J, Triscone J M 2012 Nat. Mater. 11 195Google Scholar

    [15]

    Dong S, Dagotto E 2013 Phys. Rev. B 87 195116Google Scholar

    [16]

    Piamonteze C, Gibert M, Heidler J, et al. 2015 Phys. Rev. B 92 014426Google Scholar

    [17]

    Lee A T, Han M J 2013 Phys. Rev. B 88 035126Google Scholar

    [18]

    Wei H M, Barzola-Quiquia J L, Yang C, et al. 2017 Appl. Phys. Lett. 110 102403Google Scholar

    [19]

    Zang J L, Zhou G W, Bai Y H, Quan Z Y, Xu X H 2017 Sci. Rep. 7 10557Google Scholar

    [20]

    Pan S Y, Shi L, Zhao J Y, Zhou S M, Xu X M 2018 Appl. Phys. Lett. 112 141602Google Scholar

    [21]

    Kitamura M, Kobayashi M, Sakai E, et al. 2019 Phys. Rev. B 100 245132Google Scholar

    [22]

    Zhang J, Zhou J T, Luo Z L, Chen Y B, Zhou J, Lin W W, Lu M Hm Zhang S T, Gao C, Wu D, Chen Y F 2020 Phys. Rev. B 101 014422Google Scholar

    [23]

    Tanguturi R G, Zhou P, Yan Z, Qi Y J, Zhang T J 2021 Phys. Status Solidi B 258 2000527Google Scholar

    [24]

    Brenig W 1973 Philos. Mag. 27 1093Google Scholar

    [25]

    Khan Z H, Husain M, Perng T P, Salh N, Habib S 2008 J. Phys. Condens. Matter 20 475207Google Scholar

    [26]

    Hoffman J, Tung I C, Nelson-Cheeseman B B, Liu M, Freeland J W, Bhattacharya A 2013 Phys. Rev. B 88 144411Google Scholar

    [27]

    Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, Shimakawa Y 2009 Appl. Phys. Lett. 94 082102Google Scholar

    [28]

    Wei H M, Grundmann M, Lorenz M 2016 Appl. Phys. Lett. 109 082108Google Scholar

    [29]

    Liu J, Kareev M, Prosandeev S, Gray B, Ryan P, Feeland J W, Chakhalian J 2010 Appl. Phys. Lett. 96 133111Google Scholar

    [30]

    Chakraverty S, Saito M, Tsukimoto S, Ikuhara Y, Ohtomo A, Kawasaki M 2011 Appl. Phys. Lett. 99 223101Google Scholar

    [31]

    Middey S, Meyers D, Kareev M, Moon E J, Gray B A, Liu X, Freeland J W, Chakhalian J 2012 Appl. Phys. Lett. 101 261602Google Scholar

  • 图 1  (a) 生长在STO (110) 衬底上的LMO/LNO超晶格AFM图; (b) 超晶格表面线扫描图

    Fig. 1.  (a) AFM image of LMO/LNO superlattice on STO (110) substrate; (b) line-scan of superlattice.

    图 2  (110) 取向的超晶格在(a) (110) 对称峰 和 (b) (321) 非对称峰附近的倒易空间图

    Fig. 2.  Reciprocal space maps of (110)-oriented superlattice around the (a) symmetric (110) and (b) asymmetric (321) reflexes.

    图 3  (a) (110) 取向超晶格的变温电阻率曲线; (b) 方块电导率与温度的函数关系式, 其中虚线是线性拟合

    Fig. 3.  (a) Temperature dependence of the sheet resistance of (110)-oriented superlattice; (b) logarithm of sheet conductance ln (σ) as a function of T –1/3, where the red line is linear fitting.

    图 4  不同温度下 (110) 取向超晶格的磁滞回线(1 emu = 10–3 A·m2), 被测样品在1 T磁场下冷却

    Fig. 4.  Hysteresis loops for the (110)-oriented superlattice at different constant temperatures after cooling the sample with a field of 1 T.

    图 5  场冷和零场冷下 (110) 取向超晶格的变温磁矩曲线, 插图是50 K以下的局部放大图

    Fig. 5.  Magnetic moment versus temperature of (110)-oriented superlattice in the ZFC and FC states. The inset is the zoom-in below 50 K.

    图 6  不同取向超晶格交换场强对比图

    Fig. 6.  Comparison of exchange bias field of superlattices with different orientations.

    图 7  不同取向超晶格和衬底的结构和极化示意图

    Fig. 7.  Schematics of structure and polarity along different directions for superlattices and substrates.

  • [1]

    Wei H M, Yang C, Wu Y Q, Cao B Q, Lorenz M, Grundmann M 2020 J. Mater. Chem. C 8 15575Google Scholar

    [2]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [3]

    Pena M A, Fierro J L 2001 Chem. Rev. 101 1981Google Scholar

    [4]

    Cherniukh I, Raino G, Stoferle T, et al. 2021 Nature 593 535Google Scholar

    [5]

    Noguchi Y, Matsuo H 2021 Nanomaterials 11 1857Google Scholar

    [6]

    Liu Y, Siron M, Lu D, Yang J J, dos Reis R, Cui F, Gao M Y, Lai M L, Lin J, Kong Q, Lei T, Kang J, Jin J B, Ciston J, Yang P D 2019 J. Am. Chem. Soc. 141 13028Google Scholar

    [7]

    Haislmaier R C, Lapano J, Yuan Y K, Stone G, Dong Y Q, Zhou H, Alem N, Engel-Herbert R 2018 APL Mater. 6 111104Google Scholar

    [8]

    Brahlek M, Sen Gupta A, Lapano J, Roth J, Zhang H T, Zhang L, Haislmaier R, Engel-Herbert R 2018 Adv. Funct. Mater. 28 1702772Google Scholar

    [9]

    Wei H M, Jenderka M, Bonholzer M, Grundmann M, Lorenz M 2015 Appl. Phys. Lett. 106 042103Google Scholar

    [10]

    周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文 2018 物理学报 67 157505Google Scholar

    Zhou L, Wang X, Zhang H M, Shen X D, Dong S, Long Y W 2018 Acta Phys. Sin. 67 157505Google Scholar

    [11]

    Yamasaki Y, Okuyama D, Nakamura M, et al. 2011 J. Phys. Soc. Jpn. 80 073601Google Scholar

    [12]

    张鹏, 朴红光, 张英德, 黄焦宏 2021 物理学报 70 157501Google Scholar

    Zhang P, Piao H G, Zhang Y D, Huang J H 2021 Acta Phys. Sin. 70 157501Google Scholar

    [13]

    Ouellette D G, Lee S B, Son J, Stemmer S, Balents L, Millis A J, Allen S J 2010 Phys. Rev. B 82 165112Google Scholar

    [14]

    Gibert M, Zubko P, Scherwitzl T, Iniguez J, Triscone J M 2012 Nat. Mater. 11 195Google Scholar

    [15]

    Dong S, Dagotto E 2013 Phys. Rev. B 87 195116Google Scholar

    [16]

    Piamonteze C, Gibert M, Heidler J, et al. 2015 Phys. Rev. B 92 014426Google Scholar

    [17]

    Lee A T, Han M J 2013 Phys. Rev. B 88 035126Google Scholar

    [18]

    Wei H M, Barzola-Quiquia J L, Yang C, et al. 2017 Appl. Phys. Lett. 110 102403Google Scholar

    [19]

    Zang J L, Zhou G W, Bai Y H, Quan Z Y, Xu X H 2017 Sci. Rep. 7 10557Google Scholar

    [20]

    Pan S Y, Shi L, Zhao J Y, Zhou S M, Xu X M 2018 Appl. Phys. Lett. 112 141602Google Scholar

    [21]

    Kitamura M, Kobayashi M, Sakai E, et al. 2019 Phys. Rev. B 100 245132Google Scholar

    [22]

    Zhang J, Zhou J T, Luo Z L, Chen Y B, Zhou J, Lin W W, Lu M Hm Zhang S T, Gao C, Wu D, Chen Y F 2020 Phys. Rev. B 101 014422Google Scholar

    [23]

    Tanguturi R G, Zhou P, Yan Z, Qi Y J, Zhang T J 2021 Phys. Status Solidi B 258 2000527Google Scholar

    [24]

    Brenig W 1973 Philos. Mag. 27 1093Google Scholar

    [25]

    Khan Z H, Husain M, Perng T P, Salh N, Habib S 2008 J. Phys. Condens. Matter 20 475207Google Scholar

    [26]

    Hoffman J, Tung I C, Nelson-Cheeseman B B, Liu M, Freeland J W, Bhattacharya A 2013 Phys. Rev. B 88 144411Google Scholar

    [27]

    Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, Shimakawa Y 2009 Appl. Phys. Lett. 94 082102Google Scholar

    [28]

    Wei H M, Grundmann M, Lorenz M 2016 Appl. Phys. Lett. 109 082108Google Scholar

    [29]

    Liu J, Kareev M, Prosandeev S, Gray B, Ryan P, Feeland J W, Chakhalian J 2010 Appl. Phys. Lett. 96 133111Google Scholar

    [30]

    Chakraverty S, Saito M, Tsukimoto S, Ikuhara Y, Ohtomo A, Kawasaki M 2011 Appl. Phys. Lett. 99 223101Google Scholar

    [31]

    Middey S, Meyers D, Kareev M, Moon E J, Gray B A, Liu X, Freeland J W, Chakhalian J 2012 Appl. Phys. Lett. 101 261602Google Scholar

  • [1] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [2] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [3] 王季康, 李华, 彭宇飞, 李晓燕, 张新宇. 质子交换膜燃料电池多时间尺度下的动态特性. 物理学报, 2022, 71(15): 158802. doi: 10.7498/aps.71.20212015
    [4] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [5] 李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海. 强激光场下原子超快动力学过程中的能量交换. 物理学报, 2022, 71(4): 043201. doi: 10.7498/aps.71.20211703
    [6] 戚炜恒, 王震, 李翔飞, 禹日成, 王焕华. 外延BaMoO3, BaMoO4薄膜的生长行为. 物理学报, 2022, 71(17): 178103. doi: 10.7498/aps.71.20220736
    [7] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计. 物理学报, 2022, 71(3): 038801. doi: 10.7498/aps.71.20211585
    [8] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [9] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [10] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
计量
  • 文章访问数:  2676
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-03-29
  • 上网日期:  2022-07-21
  • 刊出日期:  2022-08-05

/

返回文章
返回