搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T91钢和SIMP钢表面AlOx涂层在600 ℃静态液态铅铋共晶中的稳定性和腐蚀行为

廖庆 李炳生 葛芳芳 张宏鹏 申铁龙 毛雪丽 王任大 盛彦斌 常海龙 王志光 徐帅 陈黎明 何晓珣

引用本文:
Citation:

T91钢和SIMP钢表面AlOx涂层在600 ℃静态液态铅铋共晶中的稳定性和腐蚀行为

廖庆, 李炳生, 葛芳芳, 张宏鹏, 申铁龙, 毛雪丽, 王任大, 盛彦斌, 常海龙, 王志光, 徐帅, 陈黎明, 何晓珣

Stability and corrosion behavior of AlOx coating on T91 steel and SIMP steel in static liquid Pb-Bi eutectic at 600 ℃

Liao Qing, Li Bing-Sheng, Ge Fang-Fang, Zhang Hong-Peng, Shen Tie-Long, Mao Xue-Li, Wang Ren-Da, Sheng Yan-Bin, Chang Hai-Long, Wang Zhi-Guang, Xu Shuai, Chen Li-Ming, He Xiao-Xun
PDF
HTML
导出引用
  • 铁素体/马氏体钢, 如T91钢和SIMP钢, 被选为第4代铅冷快堆和加速器驱动系统(ADS)的主要候选结构材料. 但容器钢与液态铅铋共晶(LBE)在高温下的相容性限制了它们的应用. 铁素体/马氏体钢在600 ℃的LBE中腐蚀严重. 为了保护铁素体/马氏体钢免受高温LBE腐蚀, 在钢表面制备AlOx (x < 1.5)涂层. 本文采用磁控溅射法在T91钢和SIMP钢表面制备了AlOx涂层. 对表面有涂层的T91钢和SIMP钢以及表面无涂层的T91钢和SIMP钢在600 ℃的饱和氧浓度的LBE中腐蚀300 h和700 h的结果进行比较. 结果表明, 涂层钢表面的氧化层比无涂层钢表面的氧化层薄, 这表明AlOx涂层可以有效防止铁、铬和氧元素的快速扩散. 然而, 在LBE中腐蚀700 h后, AlOx涂层出现裂纹, 表面有涂层的T91钢和SIMP钢均遭受到明显的氧化腐蚀, 说明该涂层在600 ℃的LBE中可以在短时间内保护基体免受高温腐蚀. 但是涂层在600 ℃的LBE 中不能长时间保持稳定. 这可能是由于此次实验条件制备的AlOx涂层膜基结合力不强或制备的AlOx涂层里面存在大量的金属铝和结构缺陷. AlOx涂层在LBE中的高温稳定性有待进一步研究.
    Ferritic/martensitic steels, such as T91 steel and SIMP steel, are chosen as the main candidates of structural materials for the Generation IV lead-cooled fast reactors and accelerator driven system. However, the compatibility between container steel and liquid Pb-Bi eutectic (LBE) at high temperature limits their applications. The corrosion of ferritic/martensitic steels is serious in LBE at 600 ℃. In order to avoid corroding the ferritic/martensitic steels in LBE, it is proposed to coat AlOx (x < 1.5) on the steel surface. The AlOx coating is conducted on T91 steel and SIMP steel by magnetron sputtering. In this exploratory work, the corrosion results of AlOx coating steel are compared with the corrosion results of the uncoated steel in LBE with a saturated oxygen concentration at 600 ℃ for 300 h and 700 h. The results show that the AlOx coating can effectively prevent the iron chromium and oxygen from diffusing, so the oxide scale of the coated steel is thinner than that of the uncoated steel. However, the coating cracks after 700 h corrosion in LBE. Meanwhile, T91 steel and SIMP steel also suffer serious oxidative corrosion, indicating that the coating can protect the substrate from being corroded by 600 ℃ static LBE in a short time. However, the coating cannot keep stable for a long time in LBE at 600 ℃. This may be due to the weak film base bonding force of AlOx coating prepared under the experimental conditions, or a large number of metal aluminum and structural defects existing in AlOx coating. It is needed to further study the stability of AlOx coating in LBE at elevated temperature.
      通信作者: 李炳生, libingshengmvp@163.com
    • 基金项目: 国家自然科学基金(批准号: U1832133, 12075194)和四川科技厅科研基金(批准号: 2020ZYD055)资助的课题
      Corresponding author: Li Bing-Sheng, libingshengmvp@163.com
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. U1832133, 12075194) and the Scientific Research Fundation of the Science and Technology Department of Sichuan Province, China (Grant No. 2020ZYD055).
    [1]

    Sar F, Mhiaoui S, Gasser J G 2007 J. Non. Cryst. Solids. 353 3622Google Scholar

    [2]

    Sobolev V 2007 J. Nucl. Mater. 362 235Google Scholar

    [3]

    Zhang J 2014 Adv. Eng. Mater. 16 349Google Scholar

    [4]

    Zhang J, Ning L 2008 J. Nucl. Mater. 373 351Google Scholar

    [5]

    Xu Y C, Zhang Y G, Li X Y, Liu W, Li D D, Liu C S, Pan B C, Wang Z G 2017 Corros. Sci. 118 1Google Scholar

    [6]

    Barbier F, Rusanov A 2001 J. Nucl. Mater. 296 231Google Scholar

    [7]

    Martinelli L, Jean-Louis C, Fanny B C 2011 Nucl. Eng. Des. 241 1288Google Scholar

    [8]

    Concetta F 2015 Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies (2015 Edition-Introduction) (OECD Nuclear Energy Agency)

    [9]

    Zhang J 2009 Corros. Sci. 51 1207Google Scholar

    [10]

    Takaya S, Furukawa T, Müller G, Heinzel A, Jianu A, Weisenburger A, Aoto K, Inoue M, Okuda T, Abe F, Ohnuki S, Fujisawa T, Kimura A 2012 J. Nucl. Mater. 428 125Google Scholar

    [11]

    Srinivasan P B, Kumar M 2009 Mater. Chem. Phys. 115 179Google Scholar

    [12]

    Müller G, Schumacher G, Zimmermann F 2000 J. Nucl. Mater. 278 85Google Scholar

    [13]

    Deloffre P, Balbaud-Célérier F, Terlain A 2004 J. Nucl. Mater. 335 180Google Scholar

    [14]

    Weisenburger A, Heinzel A, Müller G, Muscher H, Rousanov A 2008 J. Nucl. Mater. 376 274Google Scholar

    [15]

    Fetzer R, Weisenburger A, Jianu A, Müller G 2012 Corros. Sci. 55 213Google Scholar

    [16]

    Short M P, Ballinger R G, Hänninen H E 2013 J. Nucl. Mater. 434 259Google Scholar

    [17]

    Hosemann P, Thau H T, Johnson A L, Maloy S A, Li N 2008 J. Nucl. Mater. 373 246Google Scholar

    [18]

    Takaya S, Furukawa T, Aoto K, Müller G, Weisenburger A, Heinzel A, Inoue M, Okuda T, Abe F, Ohnuki S, Fujisawa T and Kimura A 2009 J. Nucl. Mater. 386–388 507Google Scholar

    [19]

    Takaya S, Furukawa T, Inoue M, Fujisawa T, Okuda T, Abe F, Ohnuki S, Kimura A 2010 J. Nucl. Mater. 398 132Google Scholar

    [20]

    Heinzel A, Kondo M, Takahashi M 2006 J. Nucl. Mater. 350 264Google Scholar

    [21]

    Kurata Y, Futakawa M, Saito S 2004 J. Nucl. Mater. 335 501Google Scholar

    [22]

    Ferré F G, Mairov A, Iadicicco D, Vanazzi M, Bassini S, Utili M, Tarantino M, Bragaglia M, Lamastra F R, Nanni F, Ceseracciu L, Serruys Y, Trocellier P, Beck L, Sridharan K, Beghi M G , Di Fonzo F 2017 Corros. Sci. 124 80Google Scholar

    [23]

    Glasbrenner H, Gröschel F 2006 J. Nucl. Mater. 356 213Google Scholar

    [24]

    Weisenburger A, Jianu A, Doyle S, Bruns M, Fetzer R, Heinzel A, Del Giacco M, An W, Müller G 2013 J. Nucl. Mater 437 282Google Scholar

    [25]

    Ferré G, Ormellese M, Fonzo F D, Beghi M G 2013 Corros. Sci. 77 375Google Scholar

    [26]

    Sordo F, Abánades A, Lafuente A, Martínez-Val J M, Perlado M 2009 Nucl. Eng. Des. 239 2573Google Scholar

    [27]

    Borgstedt H U, Frees G 1995 Liquid Metal Systems. (New York: Springer) p339

    [28]

    Ellingham H J T 1994 J. Soc. Chem. Ind. 63 125

    [29]

    Yeliseyeva O, Tsisar V, Zhou Z 2013 J. Nucl. Mater. 442 434Google Scholar

    [30]

    Weisenburger A, Schroer C, Jianu A, Heinzel A, Konys J, Steiner H, Müller G, Fazio C, Gessi A, Babayan S, Kobzova A, Martinelli L, Ginestar K, Balbaud-Célerier F, Martín-Muñoz F J, Soler Crespo L 2011 J. Nucl. Mater. 415 260Google Scholar

    [31]

    Weisenburger A, Mansani L, Schumacher G, Müller G 2014 Nucl. Eng. Des. 273 584Google Scholar

    [32]

    Martinelli L, Balbaud-Célérier F, Terlain A, Bosonnet S, Picard G, Santarini G 2008 Corros. Sci. 50 2537Google Scholar

    [33]

    Martinelli L, Balbaud-Célérier F, Picard G, Santarini G 2008 Corros. Sci. 50 2549Google Scholar

    [34]

    Miorin E, Montagner F, Zin V, Giuranno D, Deambrosis S M 2019 Surf. Coat. Technol. 377 124890Google Scholar

    [35]

    Comstock M 2009 J. Nucl. Mater. 382 272Google Scholar

    [36]

    Tan L, Machut M T, Sridharan K 2007 J. Nucl. Mater. 371 161Google Scholar

    [37]

    Li B S, Liao Q, Zhang H P, Shen T L, Ge F F, Nabil D 2021 Corros. Sci. 187 109477Google Scholar

    [38]

    Zhang L L, Yan W, Shi Q Q, Li Y F, Shen Y Y, Yang K 2020 Corros. Sci. 167 108519Google Scholar

    [39]

    Liu J, Yan W, Sha W, Wang W, Shan Y Y, Yang K 2016 J. Nucl. Mater. 473 189Google Scholar

    [40]

    Li Y, Wang S, Sun P, Xu D, Ren M, Guo Y, Lin G 2017 Corros. Sci. 128 241Google Scholar

    [41]

    Shi Q, Liu J, Luan H, Yang Z, Wang W, Yan W, Shan Y, Yang K 2015 J. Nucl. Mater. 457 135Google Scholar

    [42]

    Behnamian Y, Mostafaei A, Kohandehghan A, Amirkhiz B S, Serate D, Sun Y, Liu S, Aghaie E, Zeng Y, Chmielus M, Zheng W, Guzonas D 2016 Corros. Sci. 106 188Google Scholar

    [43]

    Martinelli L, Balbaud-Célérier F, Terlian A, Delpech S, Santarini G, Favergeon J, Moulin G, Tabarant M, Picard G 2008 Corros. Sci. 50 2523Google Scholar

    [44]

    Bian L Z, Chen Z Y, Wang L J, Li F S, Chou K C 2017 J. Iron. Steel. Res. Int. 24 77Google Scholar

    [45]

    Huntz A M, Maréchal L, Lesage B, Molins R 2006 Appl. Surf. Sci. 252 7781Google Scholar

    [46]

    Melander A 1997 Int. J. Fatigue 19 13Google Scholar

    [47]

    Wang Q S, Wang W Q, Shi Z M 2018 E. Science. 113 012146Google Scholar

    [48]

    Echsler H, Martinez E A, Singheiser L, Quadakkers W J 2004 Mater. Sci. Eng. A 384 1Google Scholar

    [49]

    Hayashi H, Watanabe M, Inaba H 2000 Thermochim Acta. 359 77Google Scholar

    [50]

    Mavko G, Mukerji T, Dvorkin J 2009 The Rock Physics Handbook: Elasticity and Hooke's law 2 21Google Scholar

  • 图 1  腐蚀实验设备的简单示意图

    Fig. 1.  A simple schematic diagram of the corrosion test equipment.

    图 2  简化的Ellingham图, 铁、铅、铬和铝氧化物的热力学数据见文献[8]

    Fig. 2.  Experimental condition of thermodynamics in a simplified Ellingham diagram. Thermodynamic data for Fe, Pb, Cr and Al oxides are obtained in Ref. [8].

    图 3  T91钢和SIMP钢在600 ℃ LBE中暴露300 h和700 h后的X射线衍射图 (a) T91钢; (b) SIMP钢

    Fig. 3.  X-ray diffraction patterns of T91 steel and SIMP steel after exposing in oxygen-saturated static liquid LBE at 600 ℃ for 300 h and 700 h: (a) T91 steel; (b) SIMP.

    图 4  T91钢和SIMP钢在600 ℃的LBE中腐蚀300 h和700 h后的表面SEM图  (a) LBE中腐蚀300 h后无涂层的T91钢表面; (b) LBE中腐蚀300 h后有涂层的T91钢表面; (c) LBE中腐蚀300 h后无涂层的SIMP钢表面; (d) LBE中腐蚀300 h后有涂层的SIMP钢表面; (e) LBE中腐蚀700 h后无涂层的T91钢表面; (f) LBE中腐蚀700 h后有涂层的T91钢表面; (g) LBE中腐蚀700 h后无涂层的SIMP钢表面; (h) LBE中腐蚀700 h后无涂层的SIMP钢表面

    Fig. 4.  SEM images showing the surface morphology of SIMP and T91 steels after 300 h and 700 h corrosion in LBE at 600 ℃: (a) The uncoated surface of T91 steel in LBE for 300 h; (b) the coated surface of T91 steel in LBE for 300 h; (c) the uncoated surface of SIMP steel in LBE for 300 h; (d) the coated surface of SIMP steel in LBE for 300 h; (e) the uncoated surface of T91 steel in LBE for 700 h; (f) the coated surface of T91 steel in LBE for 700 h; (g) the uncoated surface of SIMP steel in LBE for 700 h; (h) the coated surface of SIMP steel in LBE for 700 h.

    图 5  在600 ℃的LBE中腐蚀300 h后SIMP钢涂层表面的SEM显微照片和表框区域Al, O, Cr和Fe分布图

    Fig. 5.  SEM micrograph of the coated surface of SIMP steel after 300 h corrosion in LBE at 600 ℃ and the elemental mapping images of Al, O, Cr and Fe.

    图 6  涂层T91钢和SIMP钢在600 ℃的 LBE中腐蚀300 h后表面扫描电子显微镜显微照片 (a) T91钢; (b) SIMP钢

    Fig. 6.  SEM micrograph of the coated surface of T91 and SIMP steels after 300 h corrosion in LBE at 600 ℃: (a) T91 steel; (b) SIMP steel

    图 7  在600 ℃的LBE中腐蚀300 h后T91钢和SIMP钢的横截面SEM图像和EDS线性分析(扫描方向从左到右) (a), (b)涂层T91钢; (c), (d)无涂层T91钢; (e), (f)涂层SIMP钢; (g), (h)无涂层SIMP钢

    Fig. 7.  Cross-sectional SEM images and EDS linear analysis of T91 and SIMP steels after 300 h corrosion in LBE at 600 ℃: (a), (b) The coated T91; (c), (d) the uncoated T91; (e), (f) the coated SIMP; (g), (h) the uncoated SIMP.

    图 8  在600 ℃的LBE中腐蚀LBE中腐蚀300 h后T91钢和SIMP钢的SEM 图和EDS图谱 (a)涂层T91钢; (b)涂层SIMP钢

    Fig. 8.  Cross-sectional SEM image and EDS mapping of T91 and SIMP steels after 300 h corrosion in LBE at 600 ℃ : (a) The coated T91 steel; (b) coated SIMP steel.

    图 9  T91钢和SIMP钢在600℃的LBE中腐蚀700 h后的横截面SEM图像和EDS线性分析(扫描方向从左到右) (a), (b)涂层T91钢; (c), (d)无涂层T91钢; (e), (f)涂层SIMP钢; (g), (h)无涂层SIMP钢.

    Fig. 9.  Cross-sectional SEM images and EDS linear analysis of T91 and SIMP steels after 700 h corrosion in LBE at 600 ℃: (a), (b) The coated T91; (c), (d) the uncoated T91; (e), (f) the coated SIMP; (g), (h) the uncoated SIMP.

    表 1  研究钢材的化学成分(质量分数)

    Table 1.  Chemical compositions of the studied steels (mass fraction%)

    元素FeCrNiMoVSiCNbNTaW
    T91Bal8.500.250.950.190.200.100.0670.05
    SIMPBal10.500.201.400.200.010.151.50
    下载: 导出CSV

    表 2  磁控溅射制备AlOx薄膜的典型工艺参数(1 sccm = 1 mL/min)

    Table 2.  Typical process parameters of the AlOx films prepared by magnetron sputtering

    靶功率/W频率 /kHzO2 流量/sccm氩气流量/sccm靶温度/℃沉积速率/(nm·min–1)
    4003508.632259
    下载: 导出CSV

    表 3  T91钢和SIMP钢在600 ℃静态LBE下表面氧化物在图4标记位置的EDS点分析

    Table 3.  EDS analyses of the surface oxides of T91 and SIMP steel exposed to static LBE at 600 ℃ in Fig. 4.

    原子分数/%元素
    FeCrOAlPbSi
    Point A43.8955.120.340.65
    Point B0.8961.936.40.81
    Point C42.754.370.382.55
    Point D3.0158.6334.63.76
    Point E44.2154.300.880.61
    Point F41.1758.260.57
    Point G40.5955.230.603.58
    Point H32.5163.803.69
    下载: 导出CSV
  • [1]

    Sar F, Mhiaoui S, Gasser J G 2007 J. Non. Cryst. Solids. 353 3622Google Scholar

    [2]

    Sobolev V 2007 J. Nucl. Mater. 362 235Google Scholar

    [3]

    Zhang J 2014 Adv. Eng. Mater. 16 349Google Scholar

    [4]

    Zhang J, Ning L 2008 J. Nucl. Mater. 373 351Google Scholar

    [5]

    Xu Y C, Zhang Y G, Li X Y, Liu W, Li D D, Liu C S, Pan B C, Wang Z G 2017 Corros. Sci. 118 1Google Scholar

    [6]

    Barbier F, Rusanov A 2001 J. Nucl. Mater. 296 231Google Scholar

    [7]

    Martinelli L, Jean-Louis C, Fanny B C 2011 Nucl. Eng. Des. 241 1288Google Scholar

    [8]

    Concetta F 2015 Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies (2015 Edition-Introduction) (OECD Nuclear Energy Agency)

    [9]

    Zhang J 2009 Corros. Sci. 51 1207Google Scholar

    [10]

    Takaya S, Furukawa T, Müller G, Heinzel A, Jianu A, Weisenburger A, Aoto K, Inoue M, Okuda T, Abe F, Ohnuki S, Fujisawa T, Kimura A 2012 J. Nucl. Mater. 428 125Google Scholar

    [11]

    Srinivasan P B, Kumar M 2009 Mater. Chem. Phys. 115 179Google Scholar

    [12]

    Müller G, Schumacher G, Zimmermann F 2000 J. Nucl. Mater. 278 85Google Scholar

    [13]

    Deloffre P, Balbaud-Célérier F, Terlain A 2004 J. Nucl. Mater. 335 180Google Scholar

    [14]

    Weisenburger A, Heinzel A, Müller G, Muscher H, Rousanov A 2008 J. Nucl. Mater. 376 274Google Scholar

    [15]

    Fetzer R, Weisenburger A, Jianu A, Müller G 2012 Corros. Sci. 55 213Google Scholar

    [16]

    Short M P, Ballinger R G, Hänninen H E 2013 J. Nucl. Mater. 434 259Google Scholar

    [17]

    Hosemann P, Thau H T, Johnson A L, Maloy S A, Li N 2008 J. Nucl. Mater. 373 246Google Scholar

    [18]

    Takaya S, Furukawa T, Aoto K, Müller G, Weisenburger A, Heinzel A, Inoue M, Okuda T, Abe F, Ohnuki S, Fujisawa T and Kimura A 2009 J. Nucl. Mater. 386–388 507Google Scholar

    [19]

    Takaya S, Furukawa T, Inoue M, Fujisawa T, Okuda T, Abe F, Ohnuki S, Kimura A 2010 J. Nucl. Mater. 398 132Google Scholar

    [20]

    Heinzel A, Kondo M, Takahashi M 2006 J. Nucl. Mater. 350 264Google Scholar

    [21]

    Kurata Y, Futakawa M, Saito S 2004 J. Nucl. Mater. 335 501Google Scholar

    [22]

    Ferré F G, Mairov A, Iadicicco D, Vanazzi M, Bassini S, Utili M, Tarantino M, Bragaglia M, Lamastra F R, Nanni F, Ceseracciu L, Serruys Y, Trocellier P, Beck L, Sridharan K, Beghi M G , Di Fonzo F 2017 Corros. Sci. 124 80Google Scholar

    [23]

    Glasbrenner H, Gröschel F 2006 J. Nucl. Mater. 356 213Google Scholar

    [24]

    Weisenburger A, Jianu A, Doyle S, Bruns M, Fetzer R, Heinzel A, Del Giacco M, An W, Müller G 2013 J. Nucl. Mater 437 282Google Scholar

    [25]

    Ferré G, Ormellese M, Fonzo F D, Beghi M G 2013 Corros. Sci. 77 375Google Scholar

    [26]

    Sordo F, Abánades A, Lafuente A, Martínez-Val J M, Perlado M 2009 Nucl. Eng. Des. 239 2573Google Scholar

    [27]

    Borgstedt H U, Frees G 1995 Liquid Metal Systems. (New York: Springer) p339

    [28]

    Ellingham H J T 1994 J. Soc. Chem. Ind. 63 125

    [29]

    Yeliseyeva O, Tsisar V, Zhou Z 2013 J. Nucl. Mater. 442 434Google Scholar

    [30]

    Weisenburger A, Schroer C, Jianu A, Heinzel A, Konys J, Steiner H, Müller G, Fazio C, Gessi A, Babayan S, Kobzova A, Martinelli L, Ginestar K, Balbaud-Célerier F, Martín-Muñoz F J, Soler Crespo L 2011 J. Nucl. Mater. 415 260Google Scholar

    [31]

    Weisenburger A, Mansani L, Schumacher G, Müller G 2014 Nucl. Eng. Des. 273 584Google Scholar

    [32]

    Martinelli L, Balbaud-Célérier F, Terlain A, Bosonnet S, Picard G, Santarini G 2008 Corros. Sci. 50 2537Google Scholar

    [33]

    Martinelli L, Balbaud-Célérier F, Picard G, Santarini G 2008 Corros. Sci. 50 2549Google Scholar

    [34]

    Miorin E, Montagner F, Zin V, Giuranno D, Deambrosis S M 2019 Surf. Coat. Technol. 377 124890Google Scholar

    [35]

    Comstock M 2009 J. Nucl. Mater. 382 272Google Scholar

    [36]

    Tan L, Machut M T, Sridharan K 2007 J. Nucl. Mater. 371 161Google Scholar

    [37]

    Li B S, Liao Q, Zhang H P, Shen T L, Ge F F, Nabil D 2021 Corros. Sci. 187 109477Google Scholar

    [38]

    Zhang L L, Yan W, Shi Q Q, Li Y F, Shen Y Y, Yang K 2020 Corros. Sci. 167 108519Google Scholar

    [39]

    Liu J, Yan W, Sha W, Wang W, Shan Y Y, Yang K 2016 J. Nucl. Mater. 473 189Google Scholar

    [40]

    Li Y, Wang S, Sun P, Xu D, Ren M, Guo Y, Lin G 2017 Corros. Sci. 128 241Google Scholar

    [41]

    Shi Q, Liu J, Luan H, Yang Z, Wang W, Yan W, Shan Y, Yang K 2015 J. Nucl. Mater. 457 135Google Scholar

    [42]

    Behnamian Y, Mostafaei A, Kohandehghan A, Amirkhiz B S, Serate D, Sun Y, Liu S, Aghaie E, Zeng Y, Chmielus M, Zheng W, Guzonas D 2016 Corros. Sci. 106 188Google Scholar

    [43]

    Martinelli L, Balbaud-Célérier F, Terlian A, Delpech S, Santarini G, Favergeon J, Moulin G, Tabarant M, Picard G 2008 Corros. Sci. 50 2523Google Scholar

    [44]

    Bian L Z, Chen Z Y, Wang L J, Li F S, Chou K C 2017 J. Iron. Steel. Res. Int. 24 77Google Scholar

    [45]

    Huntz A M, Maréchal L, Lesage B, Molins R 2006 Appl. Surf. Sci. 252 7781Google Scholar

    [46]

    Melander A 1997 Int. J. Fatigue 19 13Google Scholar

    [47]

    Wang Q S, Wang W Q, Shi Z M 2018 E. Science. 113 012146Google Scholar

    [48]

    Echsler H, Martinez E A, Singheiser L, Quadakkers W J 2004 Mater. Sci. Eng. A 384 1Google Scholar

    [49]

    Hayashi H, Watanabe M, Inaba H 2000 Thermochim Acta. 359 77Google Scholar

    [50]

    Mavko G, Mukerji T, Dvorkin J 2009 The Rock Physics Handbook: Elasticity and Hooke's law 2 21Google Scholar

  • [1] 甘舒匀, 徐帅, 李炳生, 柴林江, 陈黎明, 何晓珣, 汪利, 刘思捷, 文春梅, 李佳奇, 伍忠政. 含铝强化奥氏体钢在550 ℃液态铅铋中的腐蚀行为. 物理学报, 2024, 73(2): 026104. doi: 10.7498/aps.73.20231103
    [2] 刘曰利, 赵思杰, 陈文, 周静. SiO2/聚四氟乙烯复合介质材料热性能和介电性能的数值模拟. 物理学报, 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [3] 李俊炜, 贾维敏, 吕沙沙, 魏雅璇, 李正操, 王金涛. 氢气在γ-U (100) /Mo表面吸附行为的第一性原理研究. 物理学报, 2022, 71(22): 226601. doi: 10.7498/aps.71.20220631
    [4] 韦炳军, 胡立, 向鑫, 杨飞龙, 张桂凯, 王欢. CLAM钢表面Fe-Al合金渗层的制备. 物理学报, 2021, 70(3): 036801. doi: 10.7498/aps.70.20200762
    [5] 郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用. 物理学报, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [6] 王党会, 许天旱, 宋海洋. 纤锌矿GaN外延层薄膜热膨胀行为的变温Raman散射研究. 物理学报, 2016, 65(13): 130702. doi: 10.7498/aps.65.130702
    [7] 黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益. 硅基板和铜基板垂直结构GaN基LED变温变电流发光性能的研究. 物理学报, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [8] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究. 物理学报, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [9] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [10] 叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军. 通过AC-HVAF方法制备铁基非晶合金涂层的结构分析. 物理学报, 2014, 63(7): 078101. doi: 10.7498/aps.63.078101
    [11] 李文胜, 罗时军, 黄海铭, 张琴, 付艳华. 一种基于光子晶体结构的坦克涂层设计. 物理学报, 2012, 61(16): 164102. doi: 10.7498/aps.61.164102
    [12] 胡卫强, 刘宗德, 王永田, 夏兴祥. 快冷熔覆法原位合成大厚度铁基非晶复合涂层的研究. 物理学报, 2011, 60(2): 027103. doi: 10.7498/aps.60.027103
    [13] 刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦. Sc2-xGaxW3O12体系负热膨胀性能研究. 物理学报, 2010, 59(5): 3350-3356. doi: 10.7498/aps.59.3350
    [14] 王可胜, 刘全坤, 张德元. D2钢系列涂层磨损性能的数值模拟. 物理学报, 2009, 58(13): 89-S93. doi: 10.7498/aps.58.89
    [15] 张拴勤, 石云龙, 黄长庚, 连长春. 隐身涂层的光谱反射特性设计. 物理学报, 2007, 56(9): 5508-5512. doi: 10.7498/aps.56.5508
    [16] 张永康, 孔德军, 冯爱新, 鲁金忠, 葛 涛. 涂层界面结合强度检测研究(Ⅱ):涂层结合界面应力检测系统. 物理学报, 2006, 55(11): 6008-6012. doi: 10.7498/aps.55.6008
    [17] 邹 军, 张连翰, 周圣明, 徐 军, 韩 平, 张 荣. γ-LiAlO2晶体生长、改性和热学性质研究. 物理学报, 2005, 54(9): 4269-4272. doi: 10.7498/aps.54.4269
    [18] 严祖同, 孙振华. Anderson-Grüneisen参数、热膨胀系数与压强的普遍关系. 物理学报, 1989, 38(10): 1634-1641. doi: 10.7498/aps.38.1634
    [19] 阮耀钟, 李立平, 胡学龙, 彭定坤, 胡俊宝, 张裕恒. 正交和四方YBa2Cu3O7-x的热膨胀系数. 物理学报, 1988, 37(12): 2034-2037. doi: 10.7498/aps.37.2034
    [20] 阮耀钟, 李立平, 吴志强, 何平笙. PTS单晶的低温热膨胀系数. 物理学报, 1987, 36(9): 1219-1223. doi: 10.7498/aps.36.1219
计量
  • 文章访问数:  5884
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-04-06
  • 上网日期:  2022-07-21
  • 刊出日期:  2022-08-05

/

返回文章
返回