搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CLAM钢表面Fe-Al合金渗层的制备

韦炳军 胡立 向鑫 杨飞龙 张桂凯 王欢

引用本文:
Citation:

CLAM钢表面Fe-Al合金渗层的制备

韦炳军, 胡立, 向鑫, 杨飞龙, 张桂凯, 王欢

Preparation of Fe-Al alloy layer on CLAM steel

Wei Bing-Jun, Hu Li, Xiang Xin, Yang Fei-Long, Zhang Gui-Kai, Wang Huan
PDF
HTML
导出引用
  • FeAl/Al2O3阻氚涂层具有高阻氚因子、耐腐蚀和耐高温等优良性能, 是ITER首选的阻氚涂层. Fe-Al合金渗层对Al2O3膜层的形成质量有重要的影响. 本文采用了AlCl3-EMIC离子液体电镀法在CLAM钢表面镀铝, 然后利用热处理使Al与基体相互扩散制备Fe-Al合金渗层. 采用X射线衍射仪、扫描电子显微镜和能量散射谱仪研究了热处理时间和温度对渗层组织结构的影响. 结果表明: 渗层厚度随着热处理温度和时间的提升而增大, 试样表面逐渐由富铝相向贫铝相转化. 在不同热处理条件下获得的渗层与CLAM钢基体结合紧密, 无孔洞等缺陷. 热处理时间一定时, 热处理温度对渗层生长速率的影响符合Arrhenius关系, 拟合计算出CLAM钢的渗铝Arrhenius活化能为78.48 kJ/mol. 在640 ℃和760 ℃时, 渗层中金属间化合物的生长受晶界扩散速率与体扩散速率的共同影响. 在综合考虑合理的渗层厚度、表面Fe-Al合金相、热处理成本的情况下, 较优的热处理工艺为700 ℃/10 h.
    Reduced activation ferritic/martensitic steel is one of the candidate materials for tritium breeding module in the fusion reactor. In order to control the permeability of tritium in an acceptable range, coating with low hydrogen isotope permeability, known as tritium permeation barrier, is usually prepared on the surface of such structural materials. The FeAl/Al2O3 is the first choice of tritium permeation barrier for many countries, because of its fine performance of high permeation reduction factor, corrosion resistance and high-temperature resistance. The surface morphology and microstructure of Fe-Al infiltrated layer have important influence on the quality of Al2O3 coating. In this study, Al coating on the surface of CLAM steel is prepared by electroplating of aluminum from AlCl3-EMIC. Then the Fe-Al infiltrated layer is obtained by diffusion between Al and substrate by annealing. The effects of annealing time and temperature on the microstructure of Fe-Al infiltrated layer are studied by X-ray diffraction, scanning electron microscope and energy dispersive spectrometer. The results show that 20-μm-thick aluminum coating is obtained on the CLAM steel surface by electroplating. The Al coating is uniform and compact, and the size of its surface columnar grain decreases with electroplating current density increasing. Annealing results show that neither hole nor gap is observed between the Fe-Al infiltrated layer and the substrate. In addition, the infiltrated layer is found to be tightly bound to the substrate with a thickness ranging from 7 μm to 45 μm, depending on the annealing parameters. At the initial stage of annealing, Cr enriched Fe-Al alloy is formed evidently. However, such a Cr enrichment disappears at higher annealing temperature or longer annealing time due to diffusion. The surface of infiltrated layer changes from aluminum-rich phase to aluminum-poor phase, and its thickness increases with annealing time or temperature rising. The temperature dependence of the growth rate of Fe-Al infiltrated layer can be described by Arrhenius equation. At this time, the Arrhenius activation energy of aluminization on CLAM steel is calculated to be 78.48 kJ/mol. At 640 ℃ and 760 ℃, the growth of Fe-Al infiltrated layer is controlled by the grain boundary as well as the volume diffusion. When the reasonable thickness and microstructure of Fe-Al alloy layer are used and annealing time or temperature keeps as low as possible, the optimal annealing temperature and time are 700 ℃/10 h, respectively.
      通信作者: 王欢, wanghuan_2001@163.com
    • 基金项目: 国家磁约束核聚变能发展研究专项(批准号: 2018YFE0313100)、国家自然科学基金(批准号: 11975213)和中国工程物理研究院院长基金(批准号: YZJJLX2017008)资助的课题
      Corresponding author: Wang Huan, wanghuan_2001@163.com
    • Funds: Project supported by the National Magnetic Confinement Fusion Science Program (Grant No. 2018YFE0313100), the National Natural Science Foundation of China (Grant No. 11975213), and the Presidential Foundation of China Academy of Engineering Physics (Grant No. YZJJLX2017008)
    [1]

    Jitsukawa S, Kimura A, Kohyama A, Klueh R L, Tavassoli A A, van der Schaaf B, Odette G R, Rensman J W, Victoria M, Petersen C 2004 J. Nucl. Mater. 329 39Google Scholar

    [2]

    Kumar E R, Vyas K N, Jayakumar T 2016 Fusion Eng. Des. 109 1522Google Scholar

    [3]

    丁兆楠, 杨义涛, 宋银, 张丽卿, 缑洁, 张崇宏, 罗广南 2017 物理学报 66 112501Google Scholar

    Ding Z N, Yang Y T, Song Y, Zhang L Q, Gou J, Zhang C H, Luo G N 2017 Acta Phys. Sin. 66 112501Google Scholar

    [4]

    Krauss W, Konys J, Wulf S E 2014 J. Nucl. Mater. 455 522Google Scholar

    [5]

    范东军 2018 硕士学位论文 (绵阳: 中国工程物理研究院)

    Fan D J 2018 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [6]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229Google Scholar

    [7]

    Yang H G, Zhan Q, Zhao W W, Yuan X M, Hu Y, Han Z B 2011 J. Nucl. Mater. 417 1237Google Scholar

    [8]

    Xiang X, Wang X L, Zhang G K, Tang T, Lai X C 2015 Int. J. Hydrogen Energy 40 3697Google Scholar

    [9]

    Purushothaman J, Ramaseshan R, Albert S K, Rajendran, R, Gowrishankar N, Ramasubbu V, Murugesan S, Dasgupta A, Jayakumar T 2015 Fusion Eng. Des. 101 154Google Scholar

    [10]

    张桂凯, 向鑫, 杨飞龙 2015 核化学与放射化学 37 310Google Scholar

    Zhang G K, Xiang X, Yang F L 2015 J. Nuclear Radiochem. 37 310Google Scholar

    [11]

    袁晓明, 杨洪广, 赵崴巍 2015 材料导报 29 66Google Scholar

    Yuan X M, Yang H G, Zhao W W 2015 Mater. Rev. 29 66Google Scholar

    [12]

    Purushothaman J, Ramaseshan R, Albert S K, Rajendran R, Murugesan N, Ramesh C, Gowrishankar N 2017 Surf. Coat. Tech. 325 697Google Scholar

    [13]

    Chen J, Li X F, Hua P, Wang C Y, Chen K, Wu Y C, Zhou W 2017 Fusion Eng. Des. 125 57Google Scholar

    [14]

    Wulf S E, Holstein N, Krauss W, Konys J 2013 Fusion Eng. Des. 88 2530Google Scholar

    [15]

    Zhang G K, Li J, Chen C A, Dou S P, Ling G P 2011 J. Nucl. Mater. 417 1245Google Scholar

    [16]

    Zhang G K, Chen C A, Luo D L, Wang X L 2012 Fusion Eng. Des. 87 1370Google Scholar

    [17]

    张胜涛 2011 电镀实用技术 (北京: 中国纺织出版社) 第32页

    Zhang S T 2011 Practical Technology of Electroplating (Beijing: China Textile & Apparel Press) p32 (in Chinese)

    [18]

    张桂凯, 李炬, 陈长安, 向鑫, 凌国平 2010 稀有金属材料与工程 39 81

    Zhang G K, Li J, Chen C A, Xiang X, Ling G P 2010 Rare Metal Mat. Eng. 39 81

    [19]

    王兴庆, 隋永江, 吕海波 1998 上海大学学报 4 661

    Wang X Q, Sui Y J, Lv H B 1998 J. Shanghai Univ. 4 661

    [20]

    Xiang Z D, Datta P K 2004 Surf. Coat. Tech. 184 108Google Scholar

    [21]

    Mita M, Miura K, Takenaka T, Kajihara M, Kurakawa N, Sakamoto K 2006 Mat. Sci. Eng. B 126 37Google Scholar

    [22]

    胡林华, 戴松元, 王孔嘉 2003 物理学报 52 2135Google Scholar

    Hu L H, Dai S Y, Wang K J 2003 Acta Phys. Sin. 52 2135Google Scholar

    [23]

    张桂凯 2010 硕士学位论文(绵阳: 中国工程物理研究院)

    Zhang G K 2010 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [24]

    张桂凯, 李炬, 陈长安 2009 金属学报 45 983Google Scholar

    Zhang G K, Li J, Chen C A 2009 Acta Metall. Sin. 45 983Google Scholar

    [25]

    李亚江, 王娟, U. A. Puskov, 马海军 2007 材料科学与工艺 15 469Google Scholar

    Li Y J, Wang J, Puskov U A, Ma H J 2007 Mater. Sci. Technol. 15 469Google Scholar

    [26]

    刘宗昌, 任慧平, 计云萍 2015 固态相变原理新论 (北京: 科学出版社) 第56页

    Liu Z C, Ren H P, Ji Y P 2015 New Theory of Solid Phase Transition (Beijing: Science Press) p56 (in Chinese)

    [27]

    Tanaka Y, Kajihara M, Watanabe Y 2007 Mat. Sci. Eng. A 445 355Google Scholar

    [28]

    Zhang Z G, Gesmundo F, Hou P Y, Niu Y 2006 Corro. Sci. 48 741Google Scholar

    [29]

    Tanigawa H, Gaganidze E, Hirose T, Ando M, Zinkle S J, Lindau R, Diegele E 2017 Nucl. Fusion 57 092004Google Scholar

    [30]

    Ravikirana, Mythili R, Raju S, Saibaba S, Paneerselvam G, Jayakumar T, Rajendrakumar E 2014 Bull. Mater. Sci. 37 1453Google Scholar

  • 图 1  不同电镀参数下铝镀层表面(a), (c)及截面(b), (d)形貌 (a), (b)电流密度为15 mA/cm2, 68 min; (c), (d) 电流密度为10 mA/cm2, 96 min

    Fig. 1.  Surface (a), (c) and cross-sectional (b), (d) SEM micrographs of aluminum coatings under different electroplating parameters: (a), (b) Current density is 15 mA/cm2, 68 min; (c), (d) current density is 10 mA/cm2, 96 min.

    图 2  电镀电流为10 mA/cm2时铝镀层的XRD谱

    Fig. 2.  XRD patterns of Al coating at 10 mA/cm2.

    图 3  不同温度热处理4 h后试样表面形貌 (a) 640 ℃; (b)图(a)中红色方框处局部放大; (c) 760 ℃

    Fig. 3.  SEM micrographs (surface) of samples after annealing for 4 h at different temperatures: (a) 640 ℃; (b) magnification of the red box area in (a); (c) 760 ℃.

    图 4  不同温度下热处理4 h后试样SEM截面形貌及EDS元素分析结果, 其中SEM截面图中红线为线扫描位置, 白色箭头指示了相应EDS曲线图中虚线位置 (a), (d)温度为640 ℃; (b), (e) 温度为700 ℃; (c), (f) 温度为760 ℃

    Fig. 4.  Cross-sectional SEM micrographs and EDS element analysis of samples after annealing for 4 h at different temperature. The red lines in the cross-sectional SEM micrographs are scanning lines, and the white arrows indicate the position of the dotted line in the corresponding EDS graphs. (a), (d) The temperature is 640 ℃; (b), (e) the temperature is 700 ℃; (c), (f) the temperature is 760 ℃

    图 5  热处理4 h后的各试样XRD谱

    Fig. 5.  XRD patterns of samples after annealing for 4 h.

    图 6  Fe-Al合金渗层厚度与热处理温度的关系图

    Fig. 6.  Relationship between Fe-Al alloy’s thickness and annealing temperature.

    图 7  640 ℃热处理不同时间后试样SEM截面形貌及EDS元素分析结果, 其中SEM截面图中红线为线扫描位置, 白色箭头指示了相应EDS曲线图中虚线位置 (a), (d)处理时间为4 h; (b), (e) 处理时间为20 h; (c), (f) 处理时间为50 h

    Fig. 7.  Cross-sectional SEM micrographs and EDS element analysis of samples after annealing at 640 ℃ for different time. The red lines in the cross-sectional SEM micrographs are scanning lines, and the white arrows indicate the position of the dotted line in the corresponding EDS graphs: (a), (d) Heating time is 4 h; (b), (e) heating time is 20 h; (c), (f) heating time is 50 h.

    图 8  640 ℃热处理后的各试样XRD谱

    Fig. 8.  XRD patterns of samples after annealing at 640 ℃.

    图 9  760 ℃热处理不同时间后试样SEM截面形貌及EDS元素分析结果, 其中SEM截面图中红线为线扫描位置, 白色箭头指示了相应EDS曲线图中虚线位置 (a), (d)处理时间为4 h; (b), (e) 处理时间为10 h; (c), (f) 处理时间为20 h

    Fig. 9.  Cross-sectional SEM micrographs and EDS element analysis of samples after annealing at 760 ℃ for different time. The red lines in the cross-sectional SEM micrographs are scanning lines, and the white arrows indicate the position of the dotted line in the corresponding EDS graphs. (a), (d) Heating time is 4 h; (b), (e) heating time is 10 h; (c), (f) heating time is 20 h.

    图 10  760 ℃热处理后的各试样XRD谱

    Fig. 10.  XRD patterns of samples after annealing at 760 ℃.

    图 11  Fe-Al合金渗层厚度随热处理时间的变化曲线

    Fig. 11.  Curves of Fe-Al alloy’s thickness vs. the annealing time.

    图 12  700 ℃/10 h试样表面、截面形貌和截面EDS线扫描结果

    Fig. 12.  Surface (a), cross-sectional (b) SEM micrographs and EDS element analysis (c) of samples after annealing at 700 ℃ for 10 h.

    图 13  700 ℃/10 h试样XRD测试结果

    Fig. 13.  XRD patterns of samples after annealing at 700 ℃ for 10 h.

    表 1  CLAM钢的化学成分(wt%)

    Table 1.  Chemical composition of CLAM steel (wt%).

    CrWVTaMnCSiFe
    9.001.500.200.070.450.100.01Bal
    下载: 导出CSV

    表 2  热处理条件

    Table 2.  Annealing condition.

    12345678
    Temperature/℃640640640700700760760760
    Annealing time/h4205041041020
    下载: 导出CSV

    表 3  640 ℃/20 h下试样表面EDS能谱分析(at%)

    Table 3.  EDS elemental analysis of sample surface at 640 ℃ for 4 h (at%).

    SpotAl KFe KCr KO KPossible
    195.744.26Al, Al2O3
    289.8210.18Al, Al2O3
    358.8116.721.5622.92
    457.3816.6925.93
    下载: 导出CSV

    表 4  640 ℃/20 h下试样截面EDS能谱分析(at%)

    Table 4.  EDS elemental analysis of sample cross section at 640 ℃ for 20 h (at%).

    SpotAl KFe KCr KO K
    1 (白点)62.8132.874.33
    2 (基体)79.688.322.35
    3 (渗层)67.5324.261.266.95
    下载: 导出CSV

    表 5  700 ℃/10 h试样表面EDS结果

    Table 5.  EDS elemental analysis of sample surface at 700 ℃ for 10 h (at%).

    SpotAl KFe LO K
    125.1674.84
    220.3712.4667.17
    371.4514.0014.55
    下载: 导出CSV
  • [1]

    Jitsukawa S, Kimura A, Kohyama A, Klueh R L, Tavassoli A A, van der Schaaf B, Odette G R, Rensman J W, Victoria M, Petersen C 2004 J. Nucl. Mater. 329 39Google Scholar

    [2]

    Kumar E R, Vyas K N, Jayakumar T 2016 Fusion Eng. Des. 109 1522Google Scholar

    [3]

    丁兆楠, 杨义涛, 宋银, 张丽卿, 缑洁, 张崇宏, 罗广南 2017 物理学报 66 112501Google Scholar

    Ding Z N, Yang Y T, Song Y, Zhang L Q, Gou J, Zhang C H, Luo G N 2017 Acta Phys. Sin. 66 112501Google Scholar

    [4]

    Krauss W, Konys J, Wulf S E 2014 J. Nucl. Mater. 455 522Google Scholar

    [5]

    范东军 2018 硕士学位论文 (绵阳: 中国工程物理研究院)

    Fan D J 2018 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [6]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229Google Scholar

    [7]

    Yang H G, Zhan Q, Zhao W W, Yuan X M, Hu Y, Han Z B 2011 J. Nucl. Mater. 417 1237Google Scholar

    [8]

    Xiang X, Wang X L, Zhang G K, Tang T, Lai X C 2015 Int. J. Hydrogen Energy 40 3697Google Scholar

    [9]

    Purushothaman J, Ramaseshan R, Albert S K, Rajendran, R, Gowrishankar N, Ramasubbu V, Murugesan S, Dasgupta A, Jayakumar T 2015 Fusion Eng. Des. 101 154Google Scholar

    [10]

    张桂凯, 向鑫, 杨飞龙 2015 核化学与放射化学 37 310Google Scholar

    Zhang G K, Xiang X, Yang F L 2015 J. Nuclear Radiochem. 37 310Google Scholar

    [11]

    袁晓明, 杨洪广, 赵崴巍 2015 材料导报 29 66Google Scholar

    Yuan X M, Yang H G, Zhao W W 2015 Mater. Rev. 29 66Google Scholar

    [12]

    Purushothaman J, Ramaseshan R, Albert S K, Rajendran R, Murugesan N, Ramesh C, Gowrishankar N 2017 Surf. Coat. Tech. 325 697Google Scholar

    [13]

    Chen J, Li X F, Hua P, Wang C Y, Chen K, Wu Y C, Zhou W 2017 Fusion Eng. Des. 125 57Google Scholar

    [14]

    Wulf S E, Holstein N, Krauss W, Konys J 2013 Fusion Eng. Des. 88 2530Google Scholar

    [15]

    Zhang G K, Li J, Chen C A, Dou S P, Ling G P 2011 J. Nucl. Mater. 417 1245Google Scholar

    [16]

    Zhang G K, Chen C A, Luo D L, Wang X L 2012 Fusion Eng. Des. 87 1370Google Scholar

    [17]

    张胜涛 2011 电镀实用技术 (北京: 中国纺织出版社) 第32页

    Zhang S T 2011 Practical Technology of Electroplating (Beijing: China Textile & Apparel Press) p32 (in Chinese)

    [18]

    张桂凯, 李炬, 陈长安, 向鑫, 凌国平 2010 稀有金属材料与工程 39 81

    Zhang G K, Li J, Chen C A, Xiang X, Ling G P 2010 Rare Metal Mat. Eng. 39 81

    [19]

    王兴庆, 隋永江, 吕海波 1998 上海大学学报 4 661

    Wang X Q, Sui Y J, Lv H B 1998 J. Shanghai Univ. 4 661

    [20]

    Xiang Z D, Datta P K 2004 Surf. Coat. Tech. 184 108Google Scholar

    [21]

    Mita M, Miura K, Takenaka T, Kajihara M, Kurakawa N, Sakamoto K 2006 Mat. Sci. Eng. B 126 37Google Scholar

    [22]

    胡林华, 戴松元, 王孔嘉 2003 物理学报 52 2135Google Scholar

    Hu L H, Dai S Y, Wang K J 2003 Acta Phys. Sin. 52 2135Google Scholar

    [23]

    张桂凯 2010 硕士学位论文(绵阳: 中国工程物理研究院)

    Zhang G K 2010 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [24]

    张桂凯, 李炬, 陈长安 2009 金属学报 45 983Google Scholar

    Zhang G K, Li J, Chen C A 2009 Acta Metall. Sin. 45 983Google Scholar

    [25]

    李亚江, 王娟, U. A. Puskov, 马海军 2007 材料科学与工艺 15 469Google Scholar

    Li Y J, Wang J, Puskov U A, Ma H J 2007 Mater. Sci. Technol. 15 469Google Scholar

    [26]

    刘宗昌, 任慧平, 计云萍 2015 固态相变原理新论 (北京: 科学出版社) 第56页

    Liu Z C, Ren H P, Ji Y P 2015 New Theory of Solid Phase Transition (Beijing: Science Press) p56 (in Chinese)

    [27]

    Tanaka Y, Kajihara M, Watanabe Y 2007 Mat. Sci. Eng. A 445 355Google Scholar

    [28]

    Zhang Z G, Gesmundo F, Hou P Y, Niu Y 2006 Corro. Sci. 48 741Google Scholar

    [29]

    Tanigawa H, Gaganidze E, Hirose T, Ando M, Zinkle S J, Lindau R, Diegele E 2017 Nucl. Fusion 57 092004Google Scholar

    [30]

    Ravikirana, Mythili R, Raju S, Saibaba S, Paneerselvam G, Jayakumar T, Rajendrakumar E 2014 Bull. Mater. Sci. 37 1453Google Scholar

  • [1] 刘文姝, 高润亮, 冯红梅, 刘悦悦, 黄怡, 王建波, 刘青芳. 真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响. 物理学报, 2020, 69(9): 097401. doi: 10.7498/aps.69.20191942
    [2] 侯志鹏, 苏峰, 王文全. 三元Co79Zr18Cr3合金中高矫顽力. 物理学报, 2014, 63(8): 087501. doi: 10.7498/aps.63.087501
    [3] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [4] 秦杰明, 曹建明, 蒋大勇. Mg0.57Zn0.43O合金薄膜生长及性能表征. 物理学报, 2013, 62(13): 138101. doi: 10.7498/aps.62.138101
    [5] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [6] 赵学童, 李建英, 贾然, 李盛涛. 直流老化及热处理对ZnO压敏陶瓷缺陷结构的影响. 物理学报, 2013, 62(7): 077701. doi: 10.7498/aps.62.077701
    [7] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响. 物理学报, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [8] 蔡雅楠, 崔灿, 沈洪磊, 梁大宇, 李培刚, 唐为华. 热处理对富硅氧化硅薄膜中硅纳米晶形成的影响. 物理学报, 2012, 61(15): 157804. doi: 10.7498/aps.61.157804
    [9] 廖国进, 骆红, 闫绍峰, 戴晓春, 陈明. 基于透射光谱确定溅射Al2O3薄膜的光学(已撤稿). 物理学报, 2011, 60(3): 034201. doi: 10.7498/aps.60.034201
    [10] 丁燕红, 李明吉, 杨保和, 马叙. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性. 物理学报, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [11] 於黄忠, 周晓明, 邓俊裕. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [12] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [13] 李盛涛, 成鹏飞, 赵雷, 李建英. ZnO压敏陶瓷中缺陷的介电谱研究. 物理学报, 2009, 58(1): 523-528. doi: 10.7498/aps.58.523
    [14] 梁丽萍, 郝建英, 秦 梅, 郑建军. 基于透射光谱确定溶胶凝胶ZrO2薄膜的光学常数. 物理学报, 2008, 57(12): 7906-7911. doi: 10.7498/aps.57.7906
    [15] 王清周, 陆东梅, 崔春翔, 韩福生. 利用内耗研究淬火空位对Cu-11.9Al-2.5Mn(wt%)形状记忆合金逆马氏体相变温度的影响. 物理学报, 2008, 57(11): 7083-7087. doi: 10.7498/aps.57.7083
    [16] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用. 物理学报, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [17] 李万万, 孙 康. Cd0.9Zn0.1Te晶体的Cd气氛扩散热处理研究. 物理学报, 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [18] 李万万, 孙 康. Cd1-xZnxTe晶体的In气氛扩散热处理研究. 物理学报, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [19] 朱 俊, 张兴元, 陆红波. 退火与极化温度对尼龙11薄膜驻极体内陷阱能级分布的影响. 物理学报, 2005, 54(7): 3414-3417. doi: 10.7498/aps.54.3414
    [20] 计齐根, 都有为. 晶粒边界对Nd2Fe14B/α-Fe纳米复合材料性能的影响. 物理学报, 2000, 49(11): 2281-2286. doi: 10.7498/aps.49.2281
计量
  • 文章访问数:  5021
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 修回日期:  2020-09-11
  • 上网日期:  2021-01-18
  • 刊出日期:  2021-02-05

/

返回文章
返回