搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

-Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化

郑雪 余学功 杨德仁

引用本文:
Citation:

-Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化

郑雪, 余学功, 杨德仁

Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells

Zheng Xue, Yu Xue-Gong, Yang De-Ren
PDF
导出引用
  • 利用等离子增强化学气相沉积法在硅衬底上制备了 -Si:H/SiNx叠层薄膜用来钝化晶体硅太阳电池. 用有效少子寿命表征薄膜的钝化效果, 通过模拟高频电容-电压测试结果分析薄膜钝化的机理. 将-Si:H/SiNx薄膜的钝化效果与使用相同方法制备的 -Si:H薄膜进行对比, 发现 -Si:H/SiNx 薄膜的钝化效果明显优于 -Si:H薄膜. 不同温度下热处理后, -Si:H/SiNx薄膜的钝化效果随着温度的上升先提高后降低. 在最佳热处理温度300 ℃下进行热处理, -Si:H/SiNx 薄膜的钝化效果能在90 min内始终保持优于 -Si:H薄膜. 模拟计算结果表明, -Si:H/SiNx薄膜的钝化效果与 -Si:H/Si界面处的态密度有关.
    The -Si:H/SiNx stack-layer films are piepared by plasm-enhanced chemical vapor deposition to passivate crystalline silicon solar cells. Effective lifetime of minority carrier is used to characterize their passivation property and the passivation mechanism is analyzed by simulating the high-frequency capacitance-voltage curves. It is found that compared to -Si:H films prepared by the same method, -Si:H/SiNx films show better passivation property. Through thermal treatment at different temperatures, the passivation property of -Si:H/SiNx films is improved to the best at 300 ℃ first, and then degraded with rising temperature. Annealing at 300 ℃ can make -Si:H/SiNx films show a better passivation property than -Si:H films in 90 min. Simulation results indicate that the passivation property of -Si:H/SiNx films is mainly determined by the state density at the -Si:H/Si interface.
    • 基金项目: 国家科技支撑计划(批准号:2011BAE03B13)和浙江省创新团队项目(批准号:2009R50005)资助的课题.
    • Funds: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2011BAE03B13), and the Innovation Team Project of Zhejiang Province, China (Grant No. 2009R50005).
    [1]

    Burrows M Z, Das U K, Opila R L, De Wolf S, Birkmire R W 2008 J. Vac. Sci. Technol. A 26 683

    [2]

    De Wolf S, Kondo M 2007 Appl. Phys. Lett. 90 042111

    [3]

    Lauinger T, Schmidt J, Aberle A G, Hezel R 1996 Appl. Phys. Lett. 68 1232

    [4]

    Schmidt J, Moschner J D, Henze J, Dauwe S, Hezel R 2004 Proceedings of the 19th European Photovoltaic Solar Energy Conference Paris, France Republic, June, 2004 p391

    [5]

    Altermatt P P, Plagwitz H, Bock R, Schmidt J, Brendel R, Kerr M J, Cuevas A 2006 Proceedings of the 21st European Photovoltaic Solar Energy Conference Dresden, Germany Republic, September, 2006 p647

    [6]

    Glunz S W, Grohe A, Hermle M, Hofmann M, Janz S, Roth T, Schultz O, Vetter M, Martin I, Ferré R, Bermejo S, Wolke W, Warta W, Preu R, Willeke G 2005 Proceedings of the 20th European Photovoltaic Solar Energy Conference Barcelona, Spain Republic, June, 2005 p572

    [7]

    Dauwe S, Schmidt J, Hezel R 2002 Proceedings of the 29th IEEE Photovoltaic Specialists Conference New Orleans, USA Republic, May, 2002 p1246

    [8]

    Kerr M J, Cuevas A 2002 Semicond. Sci. Technol. 17 35

    [9]

    Ulyashin A, Wright D N, Bentzen A, Suphellen A, Marstein E, Holt A 2007 Proceedings of the 22nd European Photovoltaic Solar Energy Conference Milano, Italy Republic, September, 2007 p1690

    [10]

    Plagwitz H 2007 Ph. D. Dissertation (Institut fr Solarenergieforschung Hameln: Leibniz Universität Hannover)

    [11]

    Plagwitz H, Takahashi Y, Terheiden B, Brendel R 2006 Proceedings of the 21st European Photovoltaic Solar Energy Conference Dresden, Germany Republic, September, 2006 p688

    [12]

    Bentzen A, Ulyashin A, Suphellen A, Sauar E, Grambole D, Wright D N, Marstein E S, Svensson B G, Holt A 2005 Proceedings of the 15th International Photovoltaic Science and Engineering Conference Shanghai, China Republic, October, 2005 p316

    [13]

    Gatz S, Plagwitz H, Altermatt P P, Terheiden B, Brendel R 2008 Appl. Phys. Lett. 93 173502

    [14]

    Lei D, Yu X G, Song L H, Gu X, Li G H, Yang D R 2011 Appl. Phys. Lett. 99 52103

    [15]

    Sze S M, Ng K K 2007 Physics of Semiconductor Devices (3rd ed) (Hoboken: Wiley) p200

    [16]

    Lanford W A, Rand M J 1978 J. Appl. Phys. 49 2473

    [17]

    Mitchell J, Macdonald D, Cuevas A 2009 Appl. Phys. Lett. 94 162102

  • [1]

    Burrows M Z, Das U K, Opila R L, De Wolf S, Birkmire R W 2008 J. Vac. Sci. Technol. A 26 683

    [2]

    De Wolf S, Kondo M 2007 Appl. Phys. Lett. 90 042111

    [3]

    Lauinger T, Schmidt J, Aberle A G, Hezel R 1996 Appl. Phys. Lett. 68 1232

    [4]

    Schmidt J, Moschner J D, Henze J, Dauwe S, Hezel R 2004 Proceedings of the 19th European Photovoltaic Solar Energy Conference Paris, France Republic, June, 2004 p391

    [5]

    Altermatt P P, Plagwitz H, Bock R, Schmidt J, Brendel R, Kerr M J, Cuevas A 2006 Proceedings of the 21st European Photovoltaic Solar Energy Conference Dresden, Germany Republic, September, 2006 p647

    [6]

    Glunz S W, Grohe A, Hermle M, Hofmann M, Janz S, Roth T, Schultz O, Vetter M, Martin I, Ferré R, Bermejo S, Wolke W, Warta W, Preu R, Willeke G 2005 Proceedings of the 20th European Photovoltaic Solar Energy Conference Barcelona, Spain Republic, June, 2005 p572

    [7]

    Dauwe S, Schmidt J, Hezel R 2002 Proceedings of the 29th IEEE Photovoltaic Specialists Conference New Orleans, USA Republic, May, 2002 p1246

    [8]

    Kerr M J, Cuevas A 2002 Semicond. Sci. Technol. 17 35

    [9]

    Ulyashin A, Wright D N, Bentzen A, Suphellen A, Marstein E, Holt A 2007 Proceedings of the 22nd European Photovoltaic Solar Energy Conference Milano, Italy Republic, September, 2007 p1690

    [10]

    Plagwitz H 2007 Ph. D. Dissertation (Institut fr Solarenergieforschung Hameln: Leibniz Universität Hannover)

    [11]

    Plagwitz H, Takahashi Y, Terheiden B, Brendel R 2006 Proceedings of the 21st European Photovoltaic Solar Energy Conference Dresden, Germany Republic, September, 2006 p688

    [12]

    Bentzen A, Ulyashin A, Suphellen A, Sauar E, Grambole D, Wright D N, Marstein E S, Svensson B G, Holt A 2005 Proceedings of the 15th International Photovoltaic Science and Engineering Conference Shanghai, China Republic, October, 2005 p316

    [13]

    Gatz S, Plagwitz H, Altermatt P P, Terheiden B, Brendel R 2008 Appl. Phys. Lett. 93 173502

    [14]

    Lei D, Yu X G, Song L H, Gu X, Li G H, Yang D R 2011 Appl. Phys. Lett. 99 52103

    [15]

    Sze S M, Ng K K 2007 Physics of Semiconductor Devices (3rd ed) (Hoboken: Wiley) p200

    [16]

    Lanford W A, Rand M J 1978 J. Appl. Phys. 49 2473

    [17]

    Mitchell J, Macdonald D, Cuevas A 2009 Appl. Phys. Lett. 94 162102

  • [1] 王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华. 铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能. 物理学报, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [2] 任程超, 周佳凯, 张博宇, 刘璋, 赵颖, 张晓丹, 侯国付. 基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望. 物理学报, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [3] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [4] 林明月, 巨博, 李燕, 陈雪莲. 2-溴对苯二甲酸钝化的全无机钙钛矿电池的性能. 物理学报, 2021, 70(12): 128803. doi: 10.7498/aps.70.20202005
    [5] 杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞. Si3N4钝化层对横向PNP双极晶体管电离辐射损伤的影响机理. 物理学报, 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [6] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算. 物理学报, 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [7] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [8] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [9] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响. 物理学报, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [10] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究. 物理学报, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [11] 蔡雅楠, 崔灿, 沈洪磊, 梁大宇, 李培刚, 唐为华. 热处理对富硅氧化硅薄膜中硅纳米晶形成的影响. 物理学报, 2012, 61(15): 157804. doi: 10.7498/aps.61.157804
    [12] 张祥, 刘邦武, 夏洋, 李超波, 刘杰, 沈泽南. Al2O3钝化及其在晶硅太阳电池中的应用. 物理学报, 2012, 61(18): 187303. doi: 10.7498/aps.61.187303
    [13] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [14] 奚小网, 胡林华, 徐炜炜, 戴松元. TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究. 物理学报, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [15] 於黄忠, 周晓明, 邓俊裕. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [16] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [17] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [18] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [19] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] 胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临. 纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析. 物理学报, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
计量
  • 文章访问数:  6486
  • PDF下载量:  509
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-10
  • 修回日期:  2013-05-28
  • 刊出日期:  2013-10-05

/

返回文章
返回