搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效硫硒化锑薄膜太阳电池中的渐变能隙结构

曹宇 蒋家豪 刘超颖 凌同 孟丹 周静 刘欢 王俊尧

引用本文:
Citation:

高效硫硒化锑薄膜太阳电池中的渐变能隙结构

曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧

Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells

Cao Yu, Jiang Jia-Hao, Liu Chao-Ying, Ling Tong, Meng Dan, Zhou Jing, Liu Huan, Wang Jun-Yao
PDF
HTML
导出引用
  • 硫硒化锑(Sb2(S,Se)3)薄膜太阳电池因其原材料丰富、制备方法简单、性能稳定等优势近年来得到了快速发展. 本文基于Sb2(S,Se)3吸光层能隙可调的特点, 应用wx-AMPS软件对具有渐变能隙Sb2(S,Se)3太阳电池进行建模仿真和结构设计, 并与50% Se含量的恒定能隙Sb2(S,Se)3太阳电池进行了对比分析. 结果显示, 递减能隙结构所形成的附加电场能够促进空穴的输运, 抑制载流子的复合, 相比与恒定能隙Sb2(S,Se)3太阳电池可以得到更高的短路电流密度和填充因子, 使光电转换效率由12.03%提升至14.42%. 此外, 递减能隙结构通过抑制载流子的复合, 有效地缓解Sb2(S,Se)3太阳电池因厚度厚或者缺陷态高所引起的性能下降. 在厚度为1.5 μm, 缺陷态密度在1016 cm–3时. 采用递减能隙Sb2(S,Se)3太阳电池的效率比恒定能隙Sb2(S,Se)3太阳电池高6.34%. 研究结果表明通过吸光层的能隙结构设计能够发挥Sb2(S,Se)3等多元合金或化合物的能隙可调的优势, 是提高太阳电池器件性能的有效技术路线之一.
    Sb2(S,Se)3 thin film solar cells have been developed rapidly in recent years due to their abundant raw materials, simple preparation method, stable performance, etc. In this study, based on the characteristic of tunable band gap of Sb2(S,Se)3 light absorption layer, wx-AMPS software is used to simulate and design the Sb2(S,Se)3 solar cell with narrowing band gap structure, and compared with the Sb2(S,Se)3 solar cell with constant band gap (50% selenium content). The results show that the additional electric field formed by the narrowing band gap can promote the holes’ transport and inhibit the carrier’s recombination. Compared with the constant band gap structure, the narrowing band gap structure can increase the short-circuit current density of Sb2(S,Se)3 solar cells from 19.34 to 22.94 mA·cm–2, the filling factor from 64.34% to 77.04%, and the photoelectric conversion efficiency from 12.03% to 14.42%. Then, the effect of electron mobility on the performance of Sb2(S,Se)3 solar cells with narrowing band gap is studied. It is found that when the hole mobility is 0.1 cm2·V–1·s–1, the advantage of narrowing band gap can gradually appear after the electron mobility is higher than 0.25 cm2·V–1·s–1. The performance of Sb2(S,Se)3 solar cell is enhanced with the electron mobility further increasing. However, when the electron mobility is higher than 5 cm2·V–1·s–1, the device performance is saturated. Moreover, we demonstrate that the degradation caused by thick or high defect state of Sb2(S,Se)3 solar cell can be effectively alleviated by applying the narrowing band gap due to the suppression of the carrier recombination. When the thickness is 1.5 μm and the defect density is 1016 cm–3, the photoelectric conversion efficiency of Sb2(S,Se)3 solar cell with narrowing band gap is 6.34% higher than that of the constant bandgap. Our results demonstrate that the band gap engineering of the light absorption layer is one of the effective technical routes to optimizing the performance of Sb2(S,Se)3 solar cells. Since the photo-absorption material such as amorphous/microcrystalline silicon germanium, Copper indium gallium selenide and perovskite have the characteristic of tunable band gap. The design of the gradient band gap structure can also be applied to the optimization of the above alloy or compound solar cells.
      通信作者: 周静, zhoujing@neepu.edu.cn ; 王俊尧, junyao_0001@126.com
    • 基金项目: 国家自然科学基金(批准号: 51772049)、吉林省教育厅“十三五”科学技术研究项目(批准号: JJKH20200105KJ, JJKH20190705KJ)和吉林省发改委产业技术研究与开发项目(批准号: 2019C042)资助的课题
      Corresponding author: Zhou Jing, zhoujing@neepu.edu.cn ; Wang Jun-Yao, junyao_0001@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51772049), the ‘Thirteenth Five-Year’ Scientific and Technological Research Project of the Education Department of Jilin Province, China (Grant Nos. JJKH20200105KJ, JJKH20190705KJ), and the Project of Jilin Provincial Development and Reform Commission, China (Grant No. 2019C042)
    [1]

    Giraldo S, Jehl Z, Placidi M, Izquierdo-Roca V, Perez-Rodriguez A, Saucedo E 2019 Adv. Mater. 31 1806692Google Scholar

    [2]

    Ramanujam J, Bishop D M, Todorov T K, Gunawan O, Rath J, Nekovei R, Artegiani E, Romeo A 2020 Mater. Sci. 110 100619Google Scholar

    [3]

    Lei H W, Chen J J, Tan Z J, Fang G J 2019 Solar RRL 3 1900026Google Scholar

    [4]

    Liang G X, Luo Y D, Chen S, Tang R, Zheng Z H, Li X J, Liu X S, Liu Y K, Li Y F, Chen X Y, Su Z H, Zhang X H, Ma H L, Fan P 2020 Nano Energy 73 104806Google Scholar

    [5]

    薛丁江, 石杭杰, 唐江 2015 物理学报 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [6]

    Tang R, Zheng Z H, Su Z H, Li X J, Wei Y D, Zhang X H, Fu Y Q, Luo J T, Fan P, Liang G X 2019 Nano Energy 64 103929Google Scholar

    [7]

    Kondrotas R, Chen C, Tang J 2018 Joule 2 857Google Scholar

    [8]

    Mavlonov A, Razykov T, Raziq F, Gan J, Chantana J, Kawano Y, Nishimura T, Wei H, Zakutayev A, Minemoto T, Zu X, Li S, Qiao L 2020 Sol. Energy 201 227Google Scholar

    [9]

    Luo Y D, Tang R, Chen S, Hu J G, Liu Y K, Li Y F, Liu X S, Zheng Z H, Su Z H, Ma X F, Fan P, Zhang X H, Ma H L, Chen Z G, Liang G X 2020 Chem. Eng. J. 293 124599Google Scholar

    [10]

    Maximilian A, Silvana B, Miguel A L M, Thomas J L, Stefan G 2015 Phys. Rev. B 92 14101Google Scholar

    [11]

    Yang B, Qin S, Xue D J, Chen C, He Y S, Niu D M, Huang H, Tang J 2017 Prog. Photovoltaics Res. Appl. 25 113Google Scholar

    [12]

    Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G H, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy 5 587Google Scholar

    [13]

    Li K H, Lu Y, Ke X X, Li S, Lu S C, Wang C, Wang S Y, Chen C, Tang J 2020 Solar RRL 4 2000220Google Scholar

    [14]

    Pham D P, Kim S, Park J, Le A T, Cho J, Jung J, Iftiquar S M, Yi J 2016 Mater. Sci. Semicond. Process. 56 183Google Scholar

    [15]

    陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖 2019 物理学报 68 028101Google Scholar

    Chen J F, Ren H Z, Hou F H, Zhou Z X, Ren Q S, Zhang D K, Wei C C, Zhang X D, Hou G H, Zhao Y 2019 Acta Phys. Sin. 68 028101Google Scholar

    [16]

    Mattheis J, Rostan P J, Rau U, Werner J H 2007 Sol. Energy Mater. Sol. Cells 91 689Google Scholar

    [17]

    Fan Q H, Chen C Y, Liao X B, Xiang X B, Zhang S B, Ingler W, Adiga N, Hu Z H, Cao X M, Du W H, Deng X M 2010 Sol. Energy Mater. Sol. Cells 94 1300Google Scholar

    [18]

    Liu Y T, Chen Y H, Lin C C, Fan C M, Liu J C, Tung Y L, Tsai S Y 2017 Mater. Res. Express 4 075505Google Scholar

    [19]

    Choi Y C, Lee Y H, Im S H, Noh J H, Mandal T N, Yang W S, Seok S 2014 Adv. Energy Mater. 4 1301680Google Scholar

    [20]

    Zhang Y, Li J M, Jiang G S, Liu W F, Yang S F, Zhu C F, Chen T 2017 Solar RRL 1 1700017Google Scholar

    [21]

    Zhu H, Kalkan A K, Hou J, Fonash S J 1999 Proceedings of NCPV 15 th Program Review Meeting Denver, Colorado, USA, September 9−11 1998 p309

    [22]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar

    [23]

    Wang X M, Tang R F, Wu C Y, Zhu C F, Chen T 2018 J. Energy Chem. 27 713Google Scholar

    [24]

    曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X X, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [25]

    Teimouri R, Heydari Z, Ghaziani M P, Madani M, Abdy H, Kolahdouz M, Asl-Soleimani E 2020 Superlattices Microstruct. 145 106627Google Scholar

    [26]

    Islam M T, Thakur A K 2020 Sol. Energy 202 304Google Scholar

    [27]

    Li Z Q, Ni M, Feng X D 2020 Mater. Res. Express 7 016416Google Scholar

    [28]

    Cai Z H, Dai C M, Chen S Y 2020 Solar RRL 4 1900503Google Scholar

    [29]

    Chen S, Qiao X, Wang F, Luo Q, Zhang X, Wan X, Xu Y, Fan X 2016 Nanoscale 8 2277Google Scholar

    [30]

    Lee C T, Lu K F, Tseng C Y 2015 Sol. Energy 114 1Google Scholar

    [31]

    曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军 2016 物理学报 65 146801Google Scholar

    Cao Y, Xue L, Zhou J, Wang Y J, Ni J, Zhang J J 2016 Acta Phys. Sin. 65 146801Google Scholar

    [32]

    Deng H, Yuan S J, Yang X K, Zhang J, Khan J, Zhao Y, Isaq M, Ye W, Cheng Y B, Song H S, Tang J 2018 Prog. Photovoltaics Res. Appl. 26 281Google Scholar

    [33]

    Bernhard N, Bauer G H, Bloss W H 1995 Prog. Photovoltaics Res. Appl. 3 149Google Scholar

    [34]

    Cao Y, Zhou J, Wang Y J, Ni J, Zhang J J 2015 J. Alloy. Compd. 632 456Google Scholar

    [35]

    Wang X M, Tang R F, Jiang C H, Lian W T, Ju H X, Jiang G S, Li Z Q, Zhu C F, Chen T 2020 Adv. Energy Mater. 10 2002341Google Scholar

    [36]

    Cao Y, Zhu X Y, Jiang J H, Liu C Y, Zhou J, Ni J, Zhang J J, Pang J B 2020 Sol. Energy Mater. Sol. Cells 206 110279Google Scholar

    [37]

    Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar

    [38]

    Zhou J, Chen H B, Zhang X T, Chi K L, Cai Y M, Cao Y, Pang J B 2021 J. Alloys Compd. 862 158703Google Scholar

    [39]

    Cao Y, Liu C Y, Jiang J H, Zhu X Y, Zhou J, Ni J, Zhang J J, Pang J B, Rummeli M H, Zhou W J, Liu H, Cuniberti G 2021 Solar RRL 5 2000800Google Scholar

  • 图 1  Sb2(S,Se)3太阳电池的结构示意图

    Fig. 1.  Schematic diagram of the Sb2(S,Se)3 solar cell structure.

    图 2  递减能隙与恒定能隙的Sb2(S,Se)3太阳电池 (a) J-V曲线 ; (b) 能带图; (c) 恒定能隙Sb2(S,Se)3太阳电池能带结构示意图; (d)递减能隙Sb2(S,Se)3太阳电池能带结构示意图

    Fig. 2.  Sb2(S,Se)3 solar cells with narrowing and constant band gap structure: (a) J-V curves; (b) energy band diagram; (c) energy band scheme of constant band gap Sb2(S,Se)3 solar cell; (d) energy band scheme of narrowing band gap Sb2(S,Se)3 solar cell.

    图 3  不同μe的递减能隙结构Sb2(S,Se)3太阳电池 (a) 自由电子浓度分布; (b) 载流子复合率分布; (c) J-V曲线; (d) 量子效率曲线

    Fig. 3.  Narrowing band gap structure Sb2(S,Se)3 solar cells with different μe: (a) Free electron concentration distribution; (b) recombination rate distribution; (c) J-V curves; (d) quantum efficiency curves.

    图 4  不同导带位置递减能隙的Sb2(S,Se)3太阳电池 (a) J-V曲线 ; (b) 能带图; (c) 费米能级对齐示意图

    Fig. 4.  Narrowing band gap Sb2(S,Se)3 solar cells with different conduction band positions: (a) J-V curves; (b) energy band diagram; (c) energy band scheme of Fermi level alignment.

    图 5  不同缺陷态分布递减能隙的Sb2(S,Se)3太阳电池的PCE随μe的变化

    Fig. 5.  Narrowing band gap Sb2(S,Se)3 solar cells with different defect state distributions as a function of μe.

    图 6  (a) 恒定能隙与递减能隙Sb2(S,Se)3太阳电池的相对效率随厚度的变化, 此处相对效率指的是以厚度为0.25 μm Sb2(S,Se)3太阳电池效率为基准计算出的效率比值; (b) 恒定能隙与递减能隙Sb2(S,Se)3太阳电池的载流子复合率分布随厚度的变化; (c) 恒定能隙与递减能隙Sb2(S,Se)3太阳电池的相对效率随缺陷态密度的变化, 此处相对效率指的是以缺陷态密度为1014 cm–3 Sb2(S,Se)3太阳电池效率为基准计算出的效率比值; (d) 恒定能隙与递减能隙Sb2(S,Se)3太阳电池的载流子复合率分布随缺陷态密度的变化

    Fig. 6.  (a) Relative PCE of constant band gap and narrowing band gap Sb2(S,Se)3 solar cells with different thicknesses. Here, the relative PCE refers to the PCE ratio calculated by applying the PCE of Sb2(S,Se)3 solar cell with 0.25 μm thick as the denominator; (b) the carrier recombination rate distribution of constant band gap and narrowing band gap Sb2(S,Se)3 solar cells with different thicknesses; (c) the relative PCE of constant band gap and narrowing band gap Sb2(S,Se)3 solar cells with different defect densities. Here, the relative PCE refers to the PCE ratio calculated by applying the PCE of Sb2(S,Se)3 solar cell with the defect density of 1014 cm–3 as the denominator; (d) the carrier recombination rate distribution of constant band gap and narrowing band gap Sb2(S,Se)3 solar cells with different defect densities.

    图 7  不同厚度与缺陷态下恒定能隙与递减能隙Sb2(S,Se)3太阳电池效率之差的等高线图

    Fig. 7.  Contour map of the PCE difference between the constant band gap and narrowing band gap structure Sb2(S,Se)3 solar cells with different thicknesses and defect densities.

    表 1  Sb2(S,Se)3 太阳电池材料参数

    Table 1.  Material parameters of the Sb2(S,Se)3 solar cells.

    参数CdSSb2(S,Se)3Spiro-OMeTAD
    介电常数1010—193
    电子亲和
    势/eV
    3.7—3.873.7—4.041.99—2.41
    电子迁移率
    (cm2·V–1·s–1)
    10040.0001
    空穴迁移率/
    (cm2·V–1·s–1)
    250.10.0001
    施主掺杂
    浓度/cm–3
    1 × 101900
    受主掺杂
    浓度/cm–3
    01 × 10133 × 1018
    禁带宽度/eV2.41.2—1.72.91
    导带有效
    态密/cm–3
    2.2 × 10182.2 × 10182.2 × 1018
    价带有效
    态密/cm–3
    1.8 × 10191.8 × 10191.8 × 1019
    缺陷态密
    度/cm–3
    1 × 10173 × 10161 × 1016
    下载: 导出CSV

    表 2  不同μe的Sb2(S,Se)3递减能隙结构太阳电池的性能参数

    Table 2.  Photovoltaic performance of the narrowing band gap structure Sb2(S,Se)3 solar cell with different μe.

    μe/(cm2·V–1·s–1)Voc/VJsc/(mA·cm–2)FF/%PCE/%
    0.10.9320.0052.509.74
    0.250.8721.7763.3912.05
    10.8322.7773.4413.89
    50.8222.9577.1814.46
    100.8122.9577.7214.51
    下载: 导出CSV
  • [1]

    Giraldo S, Jehl Z, Placidi M, Izquierdo-Roca V, Perez-Rodriguez A, Saucedo E 2019 Adv. Mater. 31 1806692Google Scholar

    [2]

    Ramanujam J, Bishop D M, Todorov T K, Gunawan O, Rath J, Nekovei R, Artegiani E, Romeo A 2020 Mater. Sci. 110 100619Google Scholar

    [3]

    Lei H W, Chen J J, Tan Z J, Fang G J 2019 Solar RRL 3 1900026Google Scholar

    [4]

    Liang G X, Luo Y D, Chen S, Tang R, Zheng Z H, Li X J, Liu X S, Liu Y K, Li Y F, Chen X Y, Su Z H, Zhang X H, Ma H L, Fan P 2020 Nano Energy 73 104806Google Scholar

    [5]

    薛丁江, 石杭杰, 唐江 2015 物理学报 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [6]

    Tang R, Zheng Z H, Su Z H, Li X J, Wei Y D, Zhang X H, Fu Y Q, Luo J T, Fan P, Liang G X 2019 Nano Energy 64 103929Google Scholar

    [7]

    Kondrotas R, Chen C, Tang J 2018 Joule 2 857Google Scholar

    [8]

    Mavlonov A, Razykov T, Raziq F, Gan J, Chantana J, Kawano Y, Nishimura T, Wei H, Zakutayev A, Minemoto T, Zu X, Li S, Qiao L 2020 Sol. Energy 201 227Google Scholar

    [9]

    Luo Y D, Tang R, Chen S, Hu J G, Liu Y K, Li Y F, Liu X S, Zheng Z H, Su Z H, Ma X F, Fan P, Zhang X H, Ma H L, Chen Z G, Liang G X 2020 Chem. Eng. J. 293 124599Google Scholar

    [10]

    Maximilian A, Silvana B, Miguel A L M, Thomas J L, Stefan G 2015 Phys. Rev. B 92 14101Google Scholar

    [11]

    Yang B, Qin S, Xue D J, Chen C, He Y S, Niu D M, Huang H, Tang J 2017 Prog. Photovoltaics Res. Appl. 25 113Google Scholar

    [12]

    Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G H, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy 5 587Google Scholar

    [13]

    Li K H, Lu Y, Ke X X, Li S, Lu S C, Wang C, Wang S Y, Chen C, Tang J 2020 Solar RRL 4 2000220Google Scholar

    [14]

    Pham D P, Kim S, Park J, Le A T, Cho J, Jung J, Iftiquar S M, Yi J 2016 Mater. Sci. Semicond. Process. 56 183Google Scholar

    [15]

    陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖 2019 物理学报 68 028101Google Scholar

    Chen J F, Ren H Z, Hou F H, Zhou Z X, Ren Q S, Zhang D K, Wei C C, Zhang X D, Hou G H, Zhao Y 2019 Acta Phys. Sin. 68 028101Google Scholar

    [16]

    Mattheis J, Rostan P J, Rau U, Werner J H 2007 Sol. Energy Mater. Sol. Cells 91 689Google Scholar

    [17]

    Fan Q H, Chen C Y, Liao X B, Xiang X B, Zhang S B, Ingler W, Adiga N, Hu Z H, Cao X M, Du W H, Deng X M 2010 Sol. Energy Mater. Sol. Cells 94 1300Google Scholar

    [18]

    Liu Y T, Chen Y H, Lin C C, Fan C M, Liu J C, Tung Y L, Tsai S Y 2017 Mater. Res. Express 4 075505Google Scholar

    [19]

    Choi Y C, Lee Y H, Im S H, Noh J H, Mandal T N, Yang W S, Seok S 2014 Adv. Energy Mater. 4 1301680Google Scholar

    [20]

    Zhang Y, Li J M, Jiang G S, Liu W F, Yang S F, Zhu C F, Chen T 2017 Solar RRL 1 1700017Google Scholar

    [21]

    Zhu H, Kalkan A K, Hou J, Fonash S J 1999 Proceedings of NCPV 15 th Program Review Meeting Denver, Colorado, USA, September 9−11 1998 p309

    [22]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar

    [23]

    Wang X M, Tang R F, Wu C Y, Zhu C F, Chen T 2018 J. Energy Chem. 27 713Google Scholar

    [24]

    曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X X, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [25]

    Teimouri R, Heydari Z, Ghaziani M P, Madani M, Abdy H, Kolahdouz M, Asl-Soleimani E 2020 Superlattices Microstruct. 145 106627Google Scholar

    [26]

    Islam M T, Thakur A K 2020 Sol. Energy 202 304Google Scholar

    [27]

    Li Z Q, Ni M, Feng X D 2020 Mater. Res. Express 7 016416Google Scholar

    [28]

    Cai Z H, Dai C M, Chen S Y 2020 Solar RRL 4 1900503Google Scholar

    [29]

    Chen S, Qiao X, Wang F, Luo Q, Zhang X, Wan X, Xu Y, Fan X 2016 Nanoscale 8 2277Google Scholar

    [30]

    Lee C T, Lu K F, Tseng C Y 2015 Sol. Energy 114 1Google Scholar

    [31]

    曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军 2016 物理学报 65 146801Google Scholar

    Cao Y, Xue L, Zhou J, Wang Y J, Ni J, Zhang J J 2016 Acta Phys. Sin. 65 146801Google Scholar

    [32]

    Deng H, Yuan S J, Yang X K, Zhang J, Khan J, Zhao Y, Isaq M, Ye W, Cheng Y B, Song H S, Tang J 2018 Prog. Photovoltaics Res. Appl. 26 281Google Scholar

    [33]

    Bernhard N, Bauer G H, Bloss W H 1995 Prog. Photovoltaics Res. Appl. 3 149Google Scholar

    [34]

    Cao Y, Zhou J, Wang Y J, Ni J, Zhang J J 2015 J. Alloy. Compd. 632 456Google Scholar

    [35]

    Wang X M, Tang R F, Jiang C H, Lian W T, Ju H X, Jiang G S, Li Z Q, Zhu C F, Chen T 2020 Adv. Energy Mater. 10 2002341Google Scholar

    [36]

    Cao Y, Zhu X Y, Jiang J H, Liu C Y, Zhou J, Ni J, Zhang J J, Pang J B 2020 Sol. Energy Mater. Sol. Cells 206 110279Google Scholar

    [37]

    Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar

    [38]

    Zhou J, Chen H B, Zhang X T, Chi K L, Cai Y M, Cao Y, Pang J B 2021 J. Alloys Compd. 862 158703Google Scholar

    [39]

    Cao Y, Liu C Y, Jiang J H, Zhu X Y, Zhou J, Ni J, Zhang J J, Pang J B, Rummeli M H, Zhou W J, Liu H, Cuniberti G 2021 Solar RRL 5 2000800Google Scholar

  • [1] 肖友鹏, 王怀平, 冯林. 硒化亚锗异质结太阳电池模拟研究. 物理学报, 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [2] 曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化. 物理学报, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [3] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [4] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静. 硒化锑薄膜太阳电池的模拟与结构优化研究. 物理学报, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [5] 刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超. 金属氧化物基杂化型聚合物太阳电池研究. 物理学报, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [6] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究. 物理学报, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [7] 周梅, 赵德刚. 结构参数对p-i-n结构InGaN太阳能电池性能的影响及机理. 物理学报, 2012, 61(16): 168402. doi: 10.7498/aps.61.168402
    [8] 刘伟庆, 寇东星, 胡林华, 戴松元. 染料敏化太阳电池内部光路折转对电子传输特性的影响. 物理学报, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [9] 吴宝山, 王琳琳, 汪咏梅, 马廷丽. 基于半经验模型对大面积染料敏化太阳电池性能影响因素的研究. 物理学报, 2012, 61(7): 078801. doi: 10.7498/aps.61.078801
    [10] 奚小网, 胡林华, 徐炜炜, 戴松元. TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究. 物理学报, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [11] 陈双宏, 翁坚, 王利军, 张昌能, 黄阳, 姜年权, 戴松元. 负偏压作用下染料敏化太阳电池界面及光电性能研究. 物理学报, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [12] 寇东星, 刘伟庆, 胡林华, 黄阳, 戴松元, 姜年权. 电极表面改性对染料敏化太阳电池性能影响的机理研究. 物理学报, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [13] 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权. 大面积染料敏化太阳电池的串联阻抗特性研究. 物理学报, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [14] 梁林云, 戴松元, 胡林华, 戴俊, 刘伟庆. TiO2颗粒尺寸对染料敏化太阳电池内电子输运特性影响研究. 物理学报, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [15] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究. 物理学报, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [16] 翁 坚, 肖尚锋, 陈双宏, 戴松元. 大面积染料敏化太阳电池的实验研究. 物理学报, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [17] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 许 玲, 曾湘波, 郝会颖, 孔光临. 非晶硅太阳电池光照J-V特性的AMPS模拟. 物理学报, 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
    [18] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [19] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [20] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
计量
  • 文章访问数:  4569
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-29
  • 修回日期:  2021-01-18
  • 上网日期:  2021-04-26
  • 刊出日期:  2021-06-20

/

返回文章
返回