搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硒化亚锗异质结太阳电池模拟研究

肖友鹏 王怀平 冯林

引用本文:
Citation:

硒化亚锗异质结太阳电池模拟研究

肖友鹏, 王怀平, 冯林

Numerical simulation of germanium selenide heterojunction solar cell

Xiao You-Peng, Wang Huai-Ping, Feng Lin
PDF
HTML
导出引用
  • 薄膜太阳电池技术中研究的热点之一是寻找能够替代碲化镉和铜铟镓硒的吸收层材料, 近来具有优异材料和光电特性的硒化亚锗(germanium selenide, GeSe)进入了科研人员的视野. 影响异质结太阳电池性能的主要是各功能层材料的材料特性和构筑的器件结构以及结构中异质结界面处的界面特性. 本文以GeSe为吸收层, 配备了性能稳定的无机材料TiO2和Cu2O分别作为太阳电池的电子输运层和空穴输运层, 构筑了结构为FTO/TiO2/GeSe/Cu2O/Metal的异质结太阳电池. 选用TiO2和Cu2O作为载流子输运层是因为两者分别与吸收层GeSe形成小的尖峰状的导带带阶和价带带阶, 不会妨碍多子输运的同时能有效抑制界面处载流子的复合. 接着利用wxAMPS软件模拟分析了有关功能层材料参数和异质结界面特性以及工作温度对太阳电池性能参数的影响, 结合实际应用选定相关材料参数, 优化后300 K温度下GeSe异质结太阳电池的开路电压Voc为0.752 V, 短路电流Jsc为40.71 mA·cm–2, 填充因子FF为82.89%, 转换效率η为25.39%. 研究结果表明结构为FTO/TiO2/GeSe/Cu2O/Au的太阳电池有成为高效、低毒和低成本的太阳电池的潜力, 同时模拟分析也为设计和制备异质结太阳电池提供一定借鉴.
    One of the research hotspots in thin film solar cell technology is to seek the suitable absorber layer materials to replace cadmium telluride and copper indium gallium selenium. Recently, germanium selenide (GeSe) with excellent photoelectric property has entered the field of vision of photovoltaic researchers. The main factors affecting the performance of heterojunction solar cell are the material properties of each functional layer, the device configuration, and the interface characteristics at the heterostructure. In this study, we utilize GeSe as the absorber layer, and assemble it with stable TiO2 as electron transport layer and with Cu2O as hole transport layer, respectively, into a heterojunction solar cell with the FTO/TiO2/GeSe/Cu2O/Metal structure. The TiO2 and Cu2O can form small spike-like conduction band offset and valence band offset with the absorber layer, respectively, which do not hinder majority carrier transport but can effectively suppress carrier recombination at the heterointerface. Subsequently, the wxAMPS software is used to simulate and analyze the effects of functional layer material parameters, heterointerface characteristics, and operating temperature on the performance parameters of the proposed solar cell. Considering the practical application, the relevant material parameters are selected carefully. After being optimized at 300 K, the proposed GeSe heterojunction solar cell can reach an open circuit voltage of 0.752 V, a short circuit current of 40.71 mA·cm–2, a filling factor of 82.89%, and a conversion efficiency of 25.39%. It is anticipated from the results that the GeSe based heterojunction solar cell with a structure of FTO/TiO2/GeSe/Cu2O/Au has the potential to become a high-efficiency, low toxicity, and low-cost photovoltaic device. Simulation analysis also provides some references for designing and preparing the heterojunction solar cells.
      通信作者: 肖友鹏, xiaoypnc@ecut.edu.cn
    • 基金项目: 东华理工大学博士科研启动基金(批准号: DHBK2019170)和江西省科技厅重点研发项目(批准号: 20203BBE53030)资助的课题.
      Corresponding author: Xiao You-Peng, xiaoypnc@ecut.edu.cn
    • Funds: Project supported by the East China University of Technology Research Foundation for Advanced Talents, China (Grant No. DHBK2019170) and the Key Research and Development Project of Department of Science and Technology of Jiangxi Province, China (Grant No. 20203BBE53030).
    [1]

    Lee T D, Ebong A U 2017 Renewable Sustainable Energy Rev. 70 1286Google Scholar

    [2]

    Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Ho-Baillie A W Y 2018 Prog. Photovoltaics Res. Appl. 26 427Google Scholar

    [3]

    刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君 2015 物理学报 64 068801Google Scholar

    Liu H, Xue Y M, Qiao Z X, Li W, Zhang C, Yin F H, Feng S J 2015 Acta Phys. Sin. 64 068801Google Scholar

    [4]

    Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar

    [5]

    Yang W, Zhang X, Tilley S D 2021 Chem. Mater. 33 3467Google Scholar

    [6]

    Liu S C, Yang Y, Li Z B, Xue D J, Hu J S 2020 Mater. Chem. Front. 4 775Google Scholar

    [7]

    Li K, Tang J 2021 Sci. China, Ser. B Chem. 64 1605Google Scholar

    [8]

    闫彬, 薛丁江, 胡劲松 2022 化学学报 80 797Google Scholar

    Yan B, Xue D J, Hu J S 2022 Acta Chim. Sin. 80 797Google Scholar

    [9]

    Zi W, Mu F, Lu X M, Cao Y, Xie Y P, Fang L, Cheng N, Zhao Z Q, Xiao Z Y 2020 Sol. Energy 199 837Google Scholar

    [10]

    Xu D J, Liu S C, Dai C M, Chen S Y, He C, Zhao L, Hu J S, Wan L J 2017 J. Am. Chem. Soc. 139 958Google Scholar

    [11]

    Chen B W, Chen G L, Wang W H, Cai H L, Yao L Q, Chen S Y, Huang Z G 2018 Sol. Energy 176 98Google Scholar

    [12]

    Chen B W, Ruan Y R, Li J M, Wang W H, Liu X L, Cai H L, Yao L Q, Zhang J M, Chen S Y, Chen G Y, Chen G L 2019 Nanoscale 11 3968Google Scholar

    [13]

    Wu J M, Lü Y P, Wu H, Zhang H S, Wang F, Zhang J, Wang J Z, Xu X H 2022 Rare Met. 41 2992Google Scholar

    [14]

    Liu S C, Li Z B, Wu J P, Zhang X, Feng M J, Xue D J, Hu J S 2021 Sci. China Mater. 64 2118Google Scholar

    [15]

    Liu S C, Dai C M, Min Y M, Hou Y, Proppe A H, Zhou Y, Chen C, Chen S Y, Tang J, Xue D J, Sargent E H, Hu J S 2021 Nat. Commun. 12 670Google Scholar

    [16]

    肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 158801Google Scholar

    Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar

    [17]

    曹宇, 祝新运, 陈瀚博, 王长刚, 张鑫童, 候秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X Y, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [18]

    肖友鹏, 王怀平, 李刚龙 2021 物理学报 70 018801Google Scholar

    Xiao Y P, Wang H P, Li G L 2021 Acta Phys. Sin. 70 018801Google Scholar

    [19]

    肖友鹏, 王怀平 2022 光学学报 42 2331002Google Scholar

    Xiao Y P, Wang H P 2022 Acta Opt. Sin. 42 2331002Google Scholar

    [20]

    Gharibshahian I, Orouji A A, Sharbati S 2020 Sol. Energy Mater. Sol. Cells 212 110581Google Scholar

    [21]

    Ahmed S R A, Sunny A, Rahman S 2021 Sol. Energy Mater. Sol. Cells 221 110919Google Scholar

    [22]

    Huang L K, Sun X X, Li C, Xu R, Xu J, Du Y Y, Wu Y X, Ni J, Cai H K, Li J, Hu Z Y, Zhang J J 2016 Sol. Energy Mater. Sol. Cells 157 1038Google Scholar

    [23]

    Rai S, Pandey B K, Dwivedi D K 2020 Opt. Mater. 100 109631

    [24]

    Ahmed A, Riaz K, Mehmood H, Tauqeer T, Ahmad Z 2020 Opt. Mater. 105 109897Google Scholar

    [25]

    Liu S C, Mi Y, Xue D J, Chen Y X, He C, Liu X F, Hu J S, Wan L J 2017 Adv. Electron. Mater. 3 1700141Google Scholar

    [26]

    Mohammadi M H, Fathi D, Eskandari M 2020 Sol. Energy 204 200Google Scholar

    [27]

    Lin L, Jiang L, Li P, Fan B, Qiu Y 2019 J. Phys. Chem. Solids 124 205Google Scholar

    [28]

    Raoui Y, Ez-Zahraouy H, Tahiri N, Bounagui O E, Ahmad S, Kazim S 2019 Sol. Energy 193 948Google Scholar

    [29]

    Kondrotas R, Chen C, Tang J 2018 Joule 2 857Google Scholar

    [30]

    Zhao P, Lin Z, Wang J, Yue M, Su J, Zhang J, Chang J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504Google Scholar

    [31]

    Ali M H, Mamun M A A, Haque M D, Rahman M F, Hossain M K, Islam A Z M T 2023 ACS Omega 8 7017Google Scholar

    [32]

    Sze S M, Ng K K 2007 Physics of Semiconductor Devices (3rd Ed.) (New York: John Wliey & Sons) p264

  • 图 1  模拟器件结构

    Fig. 1.  Schematic diagram of device architectures.

    图 2  GeSe异质结太阳电池能带图

    Fig. 2.  Schematic diagram of energy band of GeSe based solar cell.

    图 3  不同ETL厚度和载流子浓度时太阳电池的(a) Voc, (b) Jsc, (c) FF, (d) η

    Fig. 3.  Variations of output parameters depending on the thickness and carrier concentration of ETL: (a) Voc; (b) Jsc; (c) FF; (d) η.

    图 4  不同HTL厚度和载流子浓度时太阳电池的(a) Voc, (b) Jsc, (c) FF, (d) η

    Fig. 4.  Variations of output parameters depending on the thickness and carrier concentration of HTL: (a) Voc; (b) Jsc; (c) FF; (d) η.

    图 5  不同HTL载流子浓度时太阳电池的(a) 能带结构和(b) 载流子复合率

    Fig. 5.  GeSe based solar cell with different acceptor concentration of the HTL: (a) Energy band structure; (b) carrier recombination rate.

    图 6  不同吸收层厚度和载流子浓度时太阳电池的(a) Voc, (b) Jsc, (c) FF, (d) η

    Fig. 6.  Influences of thickness and carrier concentration variations of the GeSe absorber layer on the photovoltaic performance parameters for the proposed solar cell: (a) Voc; (b) Jsc; (c) FF; (d) η.

    图 7  不同吸收层缺陷密度和工作温度时太阳电池的(a) Voc, (b) Jsc, (c) FF, (d) η

    Fig. 7.  Photovoltaic performance parameters of the GeSe based solar cell with different Nt,GeSe and operating temperature: (a) Voc; (b) Jsc; (c) FF; (d) η.

    图 8  不同Nit1和工作温度时太阳电池的(a) Voc, (b) Jsc, (c) FF, (d) η

    Fig. 8.  Photovoltaic performance parameters of the GeSe based solar cell with different Nit1 and operating temperature: (a) Voc; (b) Jsc, (c) FF; (d) η.

    图 9  不同Nit2和工作温度时太阳电池的(a) Voc, (b) Jsc, (c) FF, (d) η

    Fig. 9.  Photovoltaic performance parameters of the GeSe based solar cell with different Nit2 and operating temperature: (a) Voc; (b) Jsc; (c) FF; (d) η.

    图 10  不同背接触功函数时太阳电池的(a)J-V曲线和(b) 能带图

    Fig. 10.  The GeSe based solar cell with different back contact work function: (a) J-V curves; (b) energy band diagram.

    表 1  模拟使用的主要材料参数

    Table 1.  Simulation parameters for GeSe based solar cell in this study.

    参数 FTO TiO2 GeSe Cu2O
    厚度/µm 0.5[22] Variable Variable Variable
    相对介电常数 εr 9[22,23] 10[24] 15.3[8,25] 7.11[27]
    禁带宽度 Eg/eV 3.5[22,23] 3.2[23,24] 1.14[8,12,25] 2.17[27,28]
    电子亲和能 χ/eV 4[22,23] 3.9[23,24] 4.07[13] 3.2[27,28]
    导带有效态密度 Nc/(1017 cm–3) 22.0[22] 220.0[24] 40.0[26] 2.0[27]
    价带有效态密度 Nv/(1019 cm–3) 1.8[22] 1.8[24] 1.75[26] 1.1[27]
    施主载流子浓度 ND/(1019 cm–3) 2[22] Variable 0 0
    受主载流子浓度 NA/cm–3 0 0 Variable Variable
    电子迁移率 µn/(cm2·V–1·s–1) 20[22,23] 20[23] 11.2[8,25] 200[27]
    空穴迁移率 µp/(cm2·V–1·s–1) 10[22,23] 10[23] 12.7[8,25] 80[27]
    缺陷密度 Nt/(1015 cm–3) 1[22,23] 1[23,24] Variable 1[27]
    下载: 导出CSV

    表 2  不同背接触功函数GeSe基太阳电池的性能参数

    Table 2.  Photovoltaic performance parameters of the GeSe based solar cell with different back contact work function.

    Voc/V Jsc (mA·cm–2) FF/% η/%
    4.5 eV 0.599 40.63 47.96 11.67
    4.6 eV 0.697 40.66 55.45 15.70
    4.7 eV 0.751 40.68 63.52 19.42
    4.8 eV 0.755 40.70 74.73 22.96
    4.9 eV 0.753 40.70 82.11 25.16
    5.0 eV 0.752 40.71 82.88 25.38
    5.1 eV 0.752 40.71 82.89 25.39
    5.2 eV 0.752 40.71 82.89 25.39
    下载: 导出CSV

    表 3  模拟所得优化材料和异质结界面参数

    Table 3.  Optimized values of the different material parameters and heterointerface properties.

    参数 TiO2 GeSe Cu2O Nit1 Nit2 Au
    厚度/μm 0.05 0.4 0.05
    载流子浓度/cm–3 1018 1017 1018
    体缺陷密度/cm–3 1015 1015 1015
    界面态密度/cm–2 109 109
    背接触功函数/eV 5.1
    下载: 导出CSV
  • [1]

    Lee T D, Ebong A U 2017 Renewable Sustainable Energy Rev. 70 1286Google Scholar

    [2]

    Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Ho-Baillie A W Y 2018 Prog. Photovoltaics Res. Appl. 26 427Google Scholar

    [3]

    刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君 2015 物理学报 64 068801Google Scholar

    Liu H, Xue Y M, Qiao Z X, Li W, Zhang C, Yin F H, Feng S J 2015 Acta Phys. Sin. 64 068801Google Scholar

    [4]

    Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar

    [5]

    Yang W, Zhang X, Tilley S D 2021 Chem. Mater. 33 3467Google Scholar

    [6]

    Liu S C, Yang Y, Li Z B, Xue D J, Hu J S 2020 Mater. Chem. Front. 4 775Google Scholar

    [7]

    Li K, Tang J 2021 Sci. China, Ser. B Chem. 64 1605Google Scholar

    [8]

    闫彬, 薛丁江, 胡劲松 2022 化学学报 80 797Google Scholar

    Yan B, Xue D J, Hu J S 2022 Acta Chim. Sin. 80 797Google Scholar

    [9]

    Zi W, Mu F, Lu X M, Cao Y, Xie Y P, Fang L, Cheng N, Zhao Z Q, Xiao Z Y 2020 Sol. Energy 199 837Google Scholar

    [10]

    Xu D J, Liu S C, Dai C M, Chen S Y, He C, Zhao L, Hu J S, Wan L J 2017 J. Am. Chem. Soc. 139 958Google Scholar

    [11]

    Chen B W, Chen G L, Wang W H, Cai H L, Yao L Q, Chen S Y, Huang Z G 2018 Sol. Energy 176 98Google Scholar

    [12]

    Chen B W, Ruan Y R, Li J M, Wang W H, Liu X L, Cai H L, Yao L Q, Zhang J M, Chen S Y, Chen G Y, Chen G L 2019 Nanoscale 11 3968Google Scholar

    [13]

    Wu J M, Lü Y P, Wu H, Zhang H S, Wang F, Zhang J, Wang J Z, Xu X H 2022 Rare Met. 41 2992Google Scholar

    [14]

    Liu S C, Li Z B, Wu J P, Zhang X, Feng M J, Xue D J, Hu J S 2021 Sci. China Mater. 64 2118Google Scholar

    [15]

    Liu S C, Dai C M, Min Y M, Hou Y, Proppe A H, Zhou Y, Chen C, Chen S Y, Tang J, Xue D J, Sargent E H, Hu J S 2021 Nat. Commun. 12 670Google Scholar

    [16]

    肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 158801Google Scholar

    Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar

    [17]

    曹宇, 祝新运, 陈瀚博, 王长刚, 张鑫童, 候秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X Y, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [18]

    肖友鹏, 王怀平, 李刚龙 2021 物理学报 70 018801Google Scholar

    Xiao Y P, Wang H P, Li G L 2021 Acta Phys. Sin. 70 018801Google Scholar

    [19]

    肖友鹏, 王怀平 2022 光学学报 42 2331002Google Scholar

    Xiao Y P, Wang H P 2022 Acta Opt. Sin. 42 2331002Google Scholar

    [20]

    Gharibshahian I, Orouji A A, Sharbati S 2020 Sol. Energy Mater. Sol. Cells 212 110581Google Scholar

    [21]

    Ahmed S R A, Sunny A, Rahman S 2021 Sol. Energy Mater. Sol. Cells 221 110919Google Scholar

    [22]

    Huang L K, Sun X X, Li C, Xu R, Xu J, Du Y Y, Wu Y X, Ni J, Cai H K, Li J, Hu Z Y, Zhang J J 2016 Sol. Energy Mater. Sol. Cells 157 1038Google Scholar

    [23]

    Rai S, Pandey B K, Dwivedi D K 2020 Opt. Mater. 100 109631

    [24]

    Ahmed A, Riaz K, Mehmood H, Tauqeer T, Ahmad Z 2020 Opt. Mater. 105 109897Google Scholar

    [25]

    Liu S C, Mi Y, Xue D J, Chen Y X, He C, Liu X F, Hu J S, Wan L J 2017 Adv. Electron. Mater. 3 1700141Google Scholar

    [26]

    Mohammadi M H, Fathi D, Eskandari M 2020 Sol. Energy 204 200Google Scholar

    [27]

    Lin L, Jiang L, Li P, Fan B, Qiu Y 2019 J. Phys. Chem. Solids 124 205Google Scholar

    [28]

    Raoui Y, Ez-Zahraouy H, Tahiri N, Bounagui O E, Ahmad S, Kazim S 2019 Sol. Energy 193 948Google Scholar

    [29]

    Kondrotas R, Chen C, Tang J 2018 Joule 2 857Google Scholar

    [30]

    Zhao P, Lin Z, Wang J, Yue M, Su J, Zhang J, Chang J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504Google Scholar

    [31]

    Ali M H, Mamun M A A, Haque M D, Rahman M F, Hossain M K, Islam A Z M T 2023 ACS Omega 8 7017Google Scholar

    [32]

    Sze S M, Ng K K 2007 Physics of Semiconductor Devices (3rd Ed.) (New York: John Wliey & Sons) p264

  • [1] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [2] 任程超, 周佳凯, 张博宇, 刘璋, 赵颖, 张晓丹, 侯国付. 基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望. 物理学报, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [3] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响. 物理学报, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [4] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [5] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [6] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [7] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [8] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [9] 刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超. 金属氧化物基杂化型聚合物太阳电池研究. 物理学报, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [10] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [11] 曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖. 微晶硅锗太阳电池本征层纵向结构的优化. 物理学报, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [12] 陈双宏, 翁坚, 王利军, 张昌能, 黄阳, 姜年权, 戴松元. 负偏压作用下染料敏化太阳电池界面及光电性能研究. 物理学报, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [13] 周春兰, 励旭东, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁. 氧化随机织构硅表面对单晶硅太阳电池性能的影响研究. 物理学报, 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [14] 李天晶, 李公平, 马俊平, 高行新. 钴离子注入对二氧化钛晶体的结构和光学性能的影响. 物理学报, 2011, 60(11): 116102. doi: 10.7498/aps.60.116102
    [15] 寇东星, 刘伟庆, 胡林华, 黄阳, 戴松元, 姜年权. 电极表面改性对染料敏化太阳电池性能影响的机理研究. 物理学报, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [16] 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权. 大面积染料敏化太阳电池的串联阻抗特性研究. 物理学报, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [17] 翁 坚, 肖尚锋, 陈双宏, 戴松元. 大面积染料敏化太阳电池的实验研究. 物理学报, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [18] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [19] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [20] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
计量
  • 文章访问数:  2502
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-27
  • 修回日期:  2023-08-22
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-12-20

/

返回文章
返回