搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu2O/ZnO氧化物异质结太阳电池的研究进展

陈新亮 陈莉 周忠信 赵颖 张晓丹

引用本文:
Citation:

Cu2O/ZnO氧化物异质结太阳电池的研究进展

陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹

Progress of Cu2O/ZnO oxide heterojunction solar cells

Chen Xin-Liang, Chen Li, Zhou Zhong-Xin, Zhao Ying, Zhang Xiao-Dan
PDF
导出引用
  • 介绍了近年来低成本Cu2O/ZnO氧化物异质结太阳电池方面的研究进展.应用于光伏器件的吸收层材料Cu2O是直接带隙半导体材料,天然呈现p型;其原材料丰富,且对环境友好.Cu2O/ZnO异质结太阳电池结构主要有平面结构和纳米线/纳米棒结构.纳米结构的Cu2O太阳电池提高了器件的电荷收集作用;通过热氧化Cu片技术获得的具有大晶粒尺寸平面结构Cu2O吸收层在Cu2O/ZnO太阳电池应用中展现出了高质量特性.界面缓冲层(如i-ZnO,a-ZTO,Ga2O3等)和背表面电场(如p+-Cu2O层等)可有效地提高界面处能级匹配和增强载流子输运.10 nm厚度的Ga2O3提供了近理想的导带失配,减少了界面复合;Ga2O3非常适合作为界面层,其能够有效地提高Cu2O基太阳电池的开路电压Voc(可达到1.2 V)和光电转换效率.p+-Cu2O(如Cu2O:N和Cu2O:Na)能够减少器件中背接触电阻和形成电子反射的背表面电场(抑制电子在界面处复合).利用p型Na掺杂Cu2O(Cu2O:Na)作为吸收层和Zn1-xGex-O作为n型缓冲层,Cu2O异质结太阳电池(器件结构:MgF2/ZnO:Al/Zn0.38Ge0.62-O/Cu2O:Na)光电转换效率达8.1%.氧化物异质结太阳电池在光伏领域展现出极大的发展潜力.
    Recent progress of low cost Cu2O/ZnO hetero-junction solar cells is reviewed in this paper. The Cu2O used as an absorbing layer in photovoltaic cells is a direct bandgap semiconductor, exhibiting natural p-type conductivity. The source material of Cu2O-based solar cells is abundant and environmentally friendly. The main device structure of Cu2O/ZnO solar cells presents a planar and nano-wire/nano-rod configuration. The nanostructured Cu2O architecture conduces to charge collection in the device. The planar Cu2O absorbing layer with large grain size, achieved through the thermal oxidation of Cu sheets, exhibits high quality of the Cu2O/ZnO solar cells. The interface buffer layer (like i-ZnO, a-ZTO and Ga2O3) and back surface field (BSF, such as p+-Cu2O) can effectively improve energy band alignment match and increase carrier transport. The Cu2O paired with a 10-nm-thick Ga2O3 layer provides a nearly ideal conduction band offset and thus reduces the interface recombination. The Ga2O3 is a highly suitable buffer layer for enhancing the Voc (Voc value reaches 1.2 V) and conversion efficiency of Cu2O-based solar cells. The p+-Cu2O like N-doped Cu2O (Cu2O:N) and Na-doped Cu2O (Cu2O:Na) can reduce back-contact resistance and create an electron-reflecting back surface field in the Cu2O based solar cells. When a p-type Cu2O: Na acts as an absorbing layer and a zinc-germanium-oxide (Zn1-xGex-O) thin film is used as an n-type layer (buffer), Cu2O hetero-junction solar cell with the device structure MgF2/Al-doped ZnO (ZnO:Al)/Zn0.38Ge0.62-O/Cu2O:Na shows an efficiency of 8.1%. The oxide hetero-junction solar cells have a great potential application in the future photovoltaic field.
      通信作者: 陈新亮, cxlruzhou@163.com
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CBA00706,2011CBA00707)和天津市重点自然科学基金(批准号:13JCZDJC26900)资助的课题.
      Corresponding author: Chen Xin-Liang, cxlruzhou@163.com
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00706, 2011CBA00707) and the Key Program of Tianjin Natural Science Foundation, China (Grant No. 13JCZDJC26900).
    [1]

    Zhao J, Wang A, Green M A 1999 Prog. Photovolt.: Res. Appl. 7 471

    [2]

    Nelson J (translated by Gao Y) 2011 The Physics of Solar Cells (Shanghai: Shanghai Jiaotong University Press) pp148-206 (in Chinese) [纳尔逊J 著(高扬 译) 2011 太阳能电池物理 (上海: 上海交通大学出版社) 第148206页]

    [3]

    Green M A 2002 Physica E 14 65

    [4]

    Shah A 2004 Prog. Photovolt.: Res. Appl. 12 113

    [5]

    Yan B, Yue G, Sivec L, Yang J, Guha S, Jiang C S 2011 Appl. Phys. Lett. 99 113512

    [6]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt.: Res. Appl. 19 894

    [7]

    Wu X 2004 Sol. Energy 77 803

    [8]

    Akimoto K, Ishizuka S, Yanagita M, Nawa Y, Goutam Paul K, Sakurai T 2006 Sol. Energy 80 715

    [9]

    Henry C H 1980 J. Appl. Phys. 51 4494

    [10]

    Xie J, Guo C, Li C 2013 Phys. Chem. Chem. Phys. 15 15905

    [11]

    Hsueh T J, Hsu C L, Chang S J, Guo P W, Hsieh J H, Chen I C 2007 Scripta Mater. 57 53

    [12]

    Tanaka H, Shimakawa T, Miyata T, Sato H, Minami T 2005 Appl. Surf. Sci. 244 568

    [13]

    Mittiga A, Salza E, Sarto F, Tucci M, Vasanthi R 2006 Appl. Phys. Lett. 88 163502

    [14]

    Minami T, Nishi Y, Miyata T, Nomoto J 2011 Appl. Phys. Express 4 062301

    [15]

    Ishizuka S, Suzuki K, Okamoto Y, Yanagita M, Sakurai T, Akimoto K, Fujiwara N, Kobayashi H, Matsubara K, Niki S 2004 Phys. Status Solidi C 1 1067

    [16]

    Lv P, Zheng W, Lin L, Peng F, Huang Z, Lai F 2011 Physica B 406 1253

    [17]

    Terence K S W, Siarhei Z, Saeid M P, Goutam K D 2016 Materials 9 271

    [18]

    Raebiger H, Lany S, Zunger A 2007 Phys. Rev. B 76 045209

    [19]

    Papadimitriou L, Economou N A, Trivich D 1981 Sol. Cells 3 73

    [20]

    Ishizuka S, Kato S, Okamoto Y, Akimoto K 2002 Appl. Phys. Lett. 80 950

    [21]

    Ishizuka S, Akimoto K 2004 Appl. Phys. Lett. 85 4920

    [22]

    Kikuchi N, Tonooka K 2005 Thin Solid Films 486 33

    [23]

    Ishizuka S, Kato S, Maruyama T, Akimoto T 2001 Jpn. Appl. Phys. 40 2765

    [24]

    Malerba C, Ricardo C L A, DIncau M, Biccari F, Scardi P, Mittiga A 2012 Sol. Energy Mater. Sol. Cells 105 192

    [25]

    Huang Q, Wang L, Bi X 2013 J. Phys. D: Appl. Phys. 46 505101

    [26]

    Pu C Y, Li H J, Tang X, Zhang Q Y 2012 Acta Phys. Sin. 61 047104(in Chinese) [濮春英, 李洪婧, 唐鑫, 张庆瑜 2012 物理学报 61 047104]

    [27]

    Mller J, Rech B, Springer J, Vanecek M 2004 Sol. Energy 77 917

    [28]

    Fay S, Feitknecht L, Schluchter R, Kroll U, Vallat-Sauvain E, Shah A 2006 Sol. Energy Mater. Sol. Cells 90 2960

    [29]

    Chen L 2017 M. S. Dissertation (Tianjin: Nankai University) (in Chinese) [陈莉 2017 硕士学位论文 (天津: 南开大学)]

    [30]

    Luo Y P 2012 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [罗业萍 2012 硕士学位论文 (杭州: 浙江大学)]

    [31]

    Hame Y, San S E 2004 Sol. Energy 77 291

    [32]

    Han K, Tao M 2009 Sol. Energy Mater. Sol. Cells 93 153

    [33]

    Li S S 2015 M. S. Dissertation (Chengdu: Xinan Jiaotong University) (in Chinese) [李思思 2015 硕士学位论文 (成都: 西南交通大学)]

    [34]

    McShane C M, Siripala W P, Choi K S 2010 J. Phys. Chem. Lett. 1 2666

    [35]

    Olsen L C, Bohara R C, Urie M W 1979 Appl. Phys. Lett. 34 47

    [36]

    Fujimoto K, Oku T, Akiyama T, Suzuki A 2013 J. Phys.: Conf. Ser. 433 012024

    [37]

    Izaki M, Shinagawa T, Mizuno K T, Ida Y, Inaba M, Tasaka A 2007 J. Phys. D 40 3326

    [38]

    Tanaka H, Shimakawa T, Miyata T, Sato H, Minami T 2005 Appl. Surf. Sci. 244 568

    [39]

    Wilson S S, Bosco J P, Tolstova Y, Scanlon D O, Watson G W, Atwater H A 2014 Energy Environ. Sci. 7 3606

    [40]

    Akimoto K, Ishizuka S, Yanagita M, Nawa Y, Paul G K, Sakurai T 2006 Sol. Energy 80 715

    [41]

    Nishi Y, Miyata T, Minami T 2013 Thin Solid Films 528 72

    [42]

    Minami T, Nishi Y, Miyata T 2013 Appl. Phys. Express 6 044101

    [43]

    Minami T, Nishi Y, Miyata T 2015 Appl. Phys. Express 8 022301

    [44]

    Minami T, Nishi Y, Miyata T 2016 Appl. Phys. Express 9 052301

    [45]

    Lee Y S, Heo J, Siah C S, Mailoa J P, Brandt R E, Kim S B, Lee S W, Gordon R G, Buonassisi T 2013 Energy Environ. Sci. 6 2112

    [46]

    Lee Y S, Chua D, Brandt R E, Siah S C, Li J V, Mailoa J P, Lee S W, Gordon R G, Buonassisi T 2014 Adv. Mater. 26 4704

    [47]

    Lee Y S, Heo J, Winkler M T, Siah S C, Kim S B, Gordon R G, Buonassisi T 2013 J. Mater. Chem. A 1 15416

    [48]

    Marin A T, Rojas D M, Iza D C, Gershon T, Musselman K P, MacManus-Driscoll J L 2013 Adv. Funct. Mater. 23 3413

    [49]

    Hsueh T J, Hsu C L, Chang S J, Guo P W, Hsiehc J H, Chen I C 2007 Scripta Mater. 57 53

    [50]

    Chen J W, Perng D C, Fang J F 2011 Sol. Energy Mater. Sol. Cells 95 2471

    [51]

    Musselman K P, Wisnet A, Iza D C, Hesse H C, Scheu C, MacManus-Driscoll J L, Schmidt-Mende L 2010 Adv. Mater. 22 E254

    [52]

    Musselman K P, Marin A, Schmidt-Mende L, MacManus-Driscoll J L 2012 Adv. Funct. Mater. 22 2202

    [53]

    Wang L, Zhao Y, Wang G, Zhou H, Geng C, Wu C, Xu J 2014 Sol. Energy Mater. Sol. Cells 130 387

    [54]

    Brittman S, Yoo Y, Dasgupta N P, Kim S, Kim B, Yang P 2014 Nano Lett. 14 4665

    [55]

    Yang T H 2015 Ph. D. Dissertation (Kaifeng: Henan University) (in Chinese) [杨同辉 2015 博士学位论文 (开封: 河南大学)]

    [56]

    Liu Y, Turley H K, Tumbleston J R, Samulski E T, Lopez R Appl. Phys. Lett. 98 162105

    [57]

    Musselman K P, Levskaya Y, MacManus-Driscoll J L 2012 Appl. Phys. Lett. 101 253503

    [58]

    Takiguchi Y, Miyajima S 2015 Jpn. J. Appl. Phys. 54 112303

    [59]

    Liu D, Han D, Huang M, Zhang X, Zhang T, Dai C, Chen S 2018 Chin. Phys. B 27 018806

    [60]

    Wei H, Li D, Zheng X, Meng Q 2018 Chin. Phys. B 27 018808

    [61]

    Minami T, Miyata T, Nishi Y 2014 Thin Solid Films 559 105

    [62]

    Minami T, Miyata T, Nishi Y 2014 Sol. Energy 105 206

    [63]

    Li J, Mei Z, Liu L, Liang H, Azarov A, Kuznetsov A, Liu Y, Ji A, Meng Q, Du X 2014 Sci. Rep. 4 7240

    [64]

    Mitroi M R, Ninulescu V, Fara L 2017 Int J. Photo- energy 2017 7284367

  • [1]

    Zhao J, Wang A, Green M A 1999 Prog. Photovolt.: Res. Appl. 7 471

    [2]

    Nelson J (translated by Gao Y) 2011 The Physics of Solar Cells (Shanghai: Shanghai Jiaotong University Press) pp148-206 (in Chinese) [纳尔逊J 著(高扬 译) 2011 太阳能电池物理 (上海: 上海交通大学出版社) 第148206页]

    [3]

    Green M A 2002 Physica E 14 65

    [4]

    Shah A 2004 Prog. Photovolt.: Res. Appl. 12 113

    [5]

    Yan B, Yue G, Sivec L, Yang J, Guha S, Jiang C S 2011 Appl. Phys. Lett. 99 113512

    [6]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt.: Res. Appl. 19 894

    [7]

    Wu X 2004 Sol. Energy 77 803

    [8]

    Akimoto K, Ishizuka S, Yanagita M, Nawa Y, Goutam Paul K, Sakurai T 2006 Sol. Energy 80 715

    [9]

    Henry C H 1980 J. Appl. Phys. 51 4494

    [10]

    Xie J, Guo C, Li C 2013 Phys. Chem. Chem. Phys. 15 15905

    [11]

    Hsueh T J, Hsu C L, Chang S J, Guo P W, Hsieh J H, Chen I C 2007 Scripta Mater. 57 53

    [12]

    Tanaka H, Shimakawa T, Miyata T, Sato H, Minami T 2005 Appl. Surf. Sci. 244 568

    [13]

    Mittiga A, Salza E, Sarto F, Tucci M, Vasanthi R 2006 Appl. Phys. Lett. 88 163502

    [14]

    Minami T, Nishi Y, Miyata T, Nomoto J 2011 Appl. Phys. Express 4 062301

    [15]

    Ishizuka S, Suzuki K, Okamoto Y, Yanagita M, Sakurai T, Akimoto K, Fujiwara N, Kobayashi H, Matsubara K, Niki S 2004 Phys. Status Solidi C 1 1067

    [16]

    Lv P, Zheng W, Lin L, Peng F, Huang Z, Lai F 2011 Physica B 406 1253

    [17]

    Terence K S W, Siarhei Z, Saeid M P, Goutam K D 2016 Materials 9 271

    [18]

    Raebiger H, Lany S, Zunger A 2007 Phys. Rev. B 76 045209

    [19]

    Papadimitriou L, Economou N A, Trivich D 1981 Sol. Cells 3 73

    [20]

    Ishizuka S, Kato S, Okamoto Y, Akimoto K 2002 Appl. Phys. Lett. 80 950

    [21]

    Ishizuka S, Akimoto K 2004 Appl. Phys. Lett. 85 4920

    [22]

    Kikuchi N, Tonooka K 2005 Thin Solid Films 486 33

    [23]

    Ishizuka S, Kato S, Maruyama T, Akimoto T 2001 Jpn. Appl. Phys. 40 2765

    [24]

    Malerba C, Ricardo C L A, DIncau M, Biccari F, Scardi P, Mittiga A 2012 Sol. Energy Mater. Sol. Cells 105 192

    [25]

    Huang Q, Wang L, Bi X 2013 J. Phys. D: Appl. Phys. 46 505101

    [26]

    Pu C Y, Li H J, Tang X, Zhang Q Y 2012 Acta Phys. Sin. 61 047104(in Chinese) [濮春英, 李洪婧, 唐鑫, 张庆瑜 2012 物理学报 61 047104]

    [27]

    Mller J, Rech B, Springer J, Vanecek M 2004 Sol. Energy 77 917

    [28]

    Fay S, Feitknecht L, Schluchter R, Kroll U, Vallat-Sauvain E, Shah A 2006 Sol. Energy Mater. Sol. Cells 90 2960

    [29]

    Chen L 2017 M. S. Dissertation (Tianjin: Nankai University) (in Chinese) [陈莉 2017 硕士学位论文 (天津: 南开大学)]

    [30]

    Luo Y P 2012 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [罗业萍 2012 硕士学位论文 (杭州: 浙江大学)]

    [31]

    Hame Y, San S E 2004 Sol. Energy 77 291

    [32]

    Han K, Tao M 2009 Sol. Energy Mater. Sol. Cells 93 153

    [33]

    Li S S 2015 M. S. Dissertation (Chengdu: Xinan Jiaotong University) (in Chinese) [李思思 2015 硕士学位论文 (成都: 西南交通大学)]

    [34]

    McShane C M, Siripala W P, Choi K S 2010 J. Phys. Chem. Lett. 1 2666

    [35]

    Olsen L C, Bohara R C, Urie M W 1979 Appl. Phys. Lett. 34 47

    [36]

    Fujimoto K, Oku T, Akiyama T, Suzuki A 2013 J. Phys.: Conf. Ser. 433 012024

    [37]

    Izaki M, Shinagawa T, Mizuno K T, Ida Y, Inaba M, Tasaka A 2007 J. Phys. D 40 3326

    [38]

    Tanaka H, Shimakawa T, Miyata T, Sato H, Minami T 2005 Appl. Surf. Sci. 244 568

    [39]

    Wilson S S, Bosco J P, Tolstova Y, Scanlon D O, Watson G W, Atwater H A 2014 Energy Environ. Sci. 7 3606

    [40]

    Akimoto K, Ishizuka S, Yanagita M, Nawa Y, Paul G K, Sakurai T 2006 Sol. Energy 80 715

    [41]

    Nishi Y, Miyata T, Minami T 2013 Thin Solid Films 528 72

    [42]

    Minami T, Nishi Y, Miyata T 2013 Appl. Phys. Express 6 044101

    [43]

    Minami T, Nishi Y, Miyata T 2015 Appl. Phys. Express 8 022301

    [44]

    Minami T, Nishi Y, Miyata T 2016 Appl. Phys. Express 9 052301

    [45]

    Lee Y S, Heo J, Siah C S, Mailoa J P, Brandt R E, Kim S B, Lee S W, Gordon R G, Buonassisi T 2013 Energy Environ. Sci. 6 2112

    [46]

    Lee Y S, Chua D, Brandt R E, Siah S C, Li J V, Mailoa J P, Lee S W, Gordon R G, Buonassisi T 2014 Adv. Mater. 26 4704

    [47]

    Lee Y S, Heo J, Winkler M T, Siah S C, Kim S B, Gordon R G, Buonassisi T 2013 J. Mater. Chem. A 1 15416

    [48]

    Marin A T, Rojas D M, Iza D C, Gershon T, Musselman K P, MacManus-Driscoll J L 2013 Adv. Funct. Mater. 23 3413

    [49]

    Hsueh T J, Hsu C L, Chang S J, Guo P W, Hsiehc J H, Chen I C 2007 Scripta Mater. 57 53

    [50]

    Chen J W, Perng D C, Fang J F 2011 Sol. Energy Mater. Sol. Cells 95 2471

    [51]

    Musselman K P, Wisnet A, Iza D C, Hesse H C, Scheu C, MacManus-Driscoll J L, Schmidt-Mende L 2010 Adv. Mater. 22 E254

    [52]

    Musselman K P, Marin A, Schmidt-Mende L, MacManus-Driscoll J L 2012 Adv. Funct. Mater. 22 2202

    [53]

    Wang L, Zhao Y, Wang G, Zhou H, Geng C, Wu C, Xu J 2014 Sol. Energy Mater. Sol. Cells 130 387

    [54]

    Brittman S, Yoo Y, Dasgupta N P, Kim S, Kim B, Yang P 2014 Nano Lett. 14 4665

    [55]

    Yang T H 2015 Ph. D. Dissertation (Kaifeng: Henan University) (in Chinese) [杨同辉 2015 博士学位论文 (开封: 河南大学)]

    [56]

    Liu Y, Turley H K, Tumbleston J R, Samulski E T, Lopez R Appl. Phys. Lett. 98 162105

    [57]

    Musselman K P, Levskaya Y, MacManus-Driscoll J L 2012 Appl. Phys. Lett. 101 253503

    [58]

    Takiguchi Y, Miyajima S 2015 Jpn. J. Appl. Phys. 54 112303

    [59]

    Liu D, Han D, Huang M, Zhang X, Zhang T, Dai C, Chen S 2018 Chin. Phys. B 27 018806

    [60]

    Wei H, Li D, Zheng X, Meng Q 2018 Chin. Phys. B 27 018808

    [61]

    Minami T, Miyata T, Nishi Y 2014 Thin Solid Films 559 105

    [62]

    Minami T, Miyata T, Nishi Y 2014 Sol. Energy 105 206

    [63]

    Li J, Mei Z, Liu L, Liang H, Azarov A, Kuznetsov A, Liu Y, Ji A, Meng Q, Du X 2014 Sci. Rep. 4 7240

    [64]

    Mitroi M R, Ninulescu V, Fara L 2017 Int J. Photo- energy 2017 7284367

  • [1] 许畅, 郑德旭, 董心睿, 吴飒建, 武明星, 王开, 刘生忠. 钙钛矿基三结叠层太阳电池的研究进展. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241187
    [2] 肖友鹏, 王怀平, 冯林. 硒化亚锗异质结太阳电池模拟研究. 物理学报, 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [3] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [4] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [5] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性. 物理学报, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [6] 肖友鹏, 王涛, 魏秀琴, 周浪. 硅异质结太阳电池的物理机制和优化设计. 物理学报, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [7] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究. 物理学报, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [8] 许中华, 陈卫兵, 叶玮琼, 杨伟丰. 聚合物和小分子叠层结构有机太阳电池研究. 物理学报, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [9] 龚伟, 徐征, 赵谡玲, 刘晓东, 杨倩倩, 樊星. NPB阳极缓冲层对反型结构聚合物太阳能电池性能的影响. 物理学报, 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [10] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [11] 曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖. 微晶硅锗太阳电池本征层纵向结构的优化. 物理学报, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [12] 韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮. 低温超薄高效Cu(In, Ga)Se2太阳电池的实现. 物理学报, 2013, 62(4): 048401. doi: 10.7498/aps.62.048401
    [13] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究. 物理学报, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [14] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响. 物理学报, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [15] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [16] 刘瑞, 徐征, 赵谡玲, 张福俊, 曹晓宁, 孔超, 曹文喆, 龚伟. 利用不同阴极缓冲层来改善Pentacene/C60太阳能电池的性能. 物理学报, 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [17] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [18] 魏玮, 刘明, 曲盛薇, 张庆瑜. Ti缓冲层及退火处理对Si(111)基片上生长的ZnO薄膜结构和发光特性的影响. 物理学报, 2009, 58(8): 5736-5743. doi: 10.7498/aps.58.5736
    [19] 谢清连, 阎少林, 赵新杰, 方 兰, 季 鲁, 张玉婷, 游石头, 李加蕾, 张 旭, 周铁戈, 左 涛, 岳宏卫. 高温退火对蓝宝石基片的表面形貌和对CeO2缓冲层以及Tl-2212超导薄膜生长的影响. 物理学报, 2008, 57(1): 519-525. doi: 10.7498/aps.57.519
    [20] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
计量
  • 文章访问数:  8726
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-14
  • 修回日期:  2017-12-11
  • 刊出日期:  2018-06-05

/

返回文章
返回