搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究

肖迪 王东明 李珣 李强 沈凯 王德钊 吴玲玲 王德亮

引用本文:
Citation:

基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究

肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮

Nickel oxide as back surface field buffer layer in CdTe thin film solar cell

Xiao Di, Wang Dong-Ming, Li Xun, Li Qiang, Shen Kai, Wang De-Zhao, Wu Ling-Ling, Wang De-Liang
PDF
导出引用
  • 采用电子束蒸发法制备了NiO薄膜,并对其作为碲化镉薄膜太阳电池背接触缓冲层材料进行了相关研究.NiO缓冲层的加入使得碲化镉太阳电池开路电压显著增大.通过X射线光电子能谱测试得到的NiO/CdTe界面能带图表明NiO和CdTe的能带匹配度很好.NiO是宽禁带P型半导体材料,在电池背接触处形成背场,减少了电子在背表面处的复合,从而提高电池开路电压.通过优化NiO薄膜厚度,制备得到转换效率为12.2%、开路电压为789 mV的碲化镉太阳电池.研究证实NiO是用来制备高转换效率、高稳定性碲化镉薄膜太阳电池的一种极有前景的缓冲层材料.
    In this work, we report that NiO thin film can be used as a back contact buffer layer in CdTe thin film solar cells. The NiO layer is prepared by electron beam evaporation. To optimize the thickness of the NiO thin film, we fabricate some CdTe solar cells with different NiO thickness values. A NiO/Au back contact CdTe solar cell with an efficiency of 12.17% and an open-circuit voltage Voc of 789 mV is obtained, which are comparable to those of a standard Cu/Au back contact solar cell. The X-ray photoelectron spectroscopy (XPS) is used to quantitatively characterize the band alignment at the CdTe/NiO interface. It can be seen from the band alignment that the valence band offset (EVBO) is 0.52 eV and the conduction band offset (ECBO) is 2.68 eV. The EVBO presents no energy barrier for hole to transport from CdTe to NiO. The value of ECBO indicates that NiO can act as a back surface field layer (BSF) to dramatically reduce carrier recombination in the contact region of a CdTe cell, leading to an improved Voc. The band alignment obtained from XPS measurement shows that the band alignments of NiO and CdTe are perfectly matched. However, the conductivity of NiO film is poor. The insertion of a NiO buffer layer in the back contact increases the series resistance and reduces the fill factor (FF). We propose to use Cu/NiO composite structure as a bi-layer contact to improve the conductivity of the NiO buffer layer, which at the same time can be used to dope the CdTe film surface by Cu to obtain a low resistive contact. We fabricate a cell with a contact structure of 3-nm-Cu/20-nm-NiO/Au and the cell has a Voc of 796 mV, a Jsc (short-circuit currrent) of 24.2 mA/cm2, an FF of 70.2% and an efficiency of 13.5%. In order to study the stability of the solar cell with a Cu/NiO/Au back contact, a thermal stressing test is carried out at a temperature of 80 ℃ in the air atmosphere. For the Cu/NiO/Au back contact structure solar cell, the efficiency decreases from 13.1% to 12.9% after the cell is stressed for 80 h, showing that the stability of the Cu/NiO/Au back contact cell is significantly improved compared with that of the standard Cu/Au contact cell. In summary, the experimental results obtained in this study demonstrate that NiO thin film is a promising buffer layer for manufacturing stable and high efficiency CdTe thin film solar cells.
      通信作者: 王德亮, eedewang@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61474103,51272247)资助的课题.
      Corresponding author: Wang De-Liang, eedewang@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61474103, 51272247).
    [1]

    Britt J, Ferekides C 1993 Appl. Phys. Lett. 62 2851

    [2]

    Wu X Z 2004 Sol. Energy 77 803

    [3]

    Bai Z Z, Yang J, Wang D L 2011 Appl. Phys. Lett. 99 143502

    [4]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt Res. Appl. 23 1

    [5]

    Demtsu S H, Sites J R 2006 Thin Solid Films 510 320

    [6]

    Corwine C R, Pudov A O, Gloeckler M, Demtsu S H, Sites J R 2004 Sol. Energy Mater. Sol. Cells 82 481

    [7]

    Paudel N R, Yan Y F 2016 Prog. Photovolt Res. Appl. 24 94

    [8]

    Trck J, Nonnenmarcher H J, Connor P M L, Siol S, Siepchen B, Heimfarth J P, Klein A, Jaegermann W 2016 Prog. Photovolt Res. Appl. 24 1229

    [9]

    Yang R L, Wang D Z, Jeng M J, Ho K M, Wang D L 2016 Prog. Photovolt Res. Appl. 24 59

    [10]

    Phillips A B, Khanal R R, Song Z N, Zartman R M, DeWitt J L, Stone J M, Roland P J, Plotnikov V V, Carter C W, Stayancho J M, Ellingson R J, Compaan A D 2013 Nano Lett. 13 5224

    [11]

    Paudel N R, Xiao C X, Yan Y F 2015 Prog. Photovolt Res. Appl. 23 437

    [12]

    Paudel N R, Compaan A D, Yan Y F 2013 Sol. Energy Mater. Sol. Cells 113 26

    [13]

    Shen K, Yang R L, Wang D Z, Jeng M J, Chaudhary S, Ho K M, Wang D L 2016 Sol. Energy Mater. Sol. Cells 144 500

    [14]

    Ishikawa R, Furuya Y, Araki R, Nomoto T, Ogawa Y, Hosono A, Okamoto T, Tsuboi N 2016 Jpn. J. Appl. Phys. 55 02BF04

    [15]

    Liu S Y, Liu R, Chen Y, Ho S, Kim J H, So F 2014 Chem. Mater. 26 4528

    [16]

    Sonavane A C, Inamdar A I, Shinde P S, Deshmukh H P, Patil R S, Patil P S 2010 J. Alloys Compd. 489 667

    [17]

    Jung J W, Chueh C C, Jen A K Y 2015 Adv. Mater. 27 7874

    [18]

    Nahass M M E, Ismail M E, Hagary M E 2015 J. Alloys Compd. 646 937

    [19]

    Ai L, Fang G J, Yuan L Y, Liu N S, Wang M J, Li C, Zhang Q L, Li J, Zhao X Z 2008 Appl. Surf. Sci. 254 2401

    [20]

    Yin X T, Chen P, Que M D, Xing Y L, Que W X, Niu C M, Shao J Y 2016 ACS Nano 10 3630

    [21]

    Wang Z Y, Lee S H, Kim D H, Kim J H, Park J G 2010 Sol. Energy Mater. Sol. Cells 94 1591

    [22]

    Li J J, Diercks D R, Ohno T R, Warren C W, Lonergan M C, Beach J D, Wolden C A 2015 Sol. Energy Mater. Sol. Cells 133 208

    [23]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695

  • [1]

    Britt J, Ferekides C 1993 Appl. Phys. Lett. 62 2851

    [2]

    Wu X Z 2004 Sol. Energy 77 803

    [3]

    Bai Z Z, Yang J, Wang D L 2011 Appl. Phys. Lett. 99 143502

    [4]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt Res. Appl. 23 1

    [5]

    Demtsu S H, Sites J R 2006 Thin Solid Films 510 320

    [6]

    Corwine C R, Pudov A O, Gloeckler M, Demtsu S H, Sites J R 2004 Sol. Energy Mater. Sol. Cells 82 481

    [7]

    Paudel N R, Yan Y F 2016 Prog. Photovolt Res. Appl. 24 94

    [8]

    Trck J, Nonnenmarcher H J, Connor P M L, Siol S, Siepchen B, Heimfarth J P, Klein A, Jaegermann W 2016 Prog. Photovolt Res. Appl. 24 1229

    [9]

    Yang R L, Wang D Z, Jeng M J, Ho K M, Wang D L 2016 Prog. Photovolt Res. Appl. 24 59

    [10]

    Phillips A B, Khanal R R, Song Z N, Zartman R M, DeWitt J L, Stone J M, Roland P J, Plotnikov V V, Carter C W, Stayancho J M, Ellingson R J, Compaan A D 2013 Nano Lett. 13 5224

    [11]

    Paudel N R, Xiao C X, Yan Y F 2015 Prog. Photovolt Res. Appl. 23 437

    [12]

    Paudel N R, Compaan A D, Yan Y F 2013 Sol. Energy Mater. Sol. Cells 113 26

    [13]

    Shen K, Yang R L, Wang D Z, Jeng M J, Chaudhary S, Ho K M, Wang D L 2016 Sol. Energy Mater. Sol. Cells 144 500

    [14]

    Ishikawa R, Furuya Y, Araki R, Nomoto T, Ogawa Y, Hosono A, Okamoto T, Tsuboi N 2016 Jpn. J. Appl. Phys. 55 02BF04

    [15]

    Liu S Y, Liu R, Chen Y, Ho S, Kim J H, So F 2014 Chem. Mater. 26 4528

    [16]

    Sonavane A C, Inamdar A I, Shinde P S, Deshmukh H P, Patil R S, Patil P S 2010 J. Alloys Compd. 489 667

    [17]

    Jung J W, Chueh C C, Jen A K Y 2015 Adv. Mater. 27 7874

    [18]

    Nahass M M E, Ismail M E, Hagary M E 2015 J. Alloys Compd. 646 937

    [19]

    Ai L, Fang G J, Yuan L Y, Liu N S, Wang M J, Li C, Zhang Q L, Li J, Zhao X Z 2008 Appl. Surf. Sci. 254 2401

    [20]

    Yin X T, Chen P, Que M D, Xing Y L, Que W X, Niu C M, Shao J Y 2016 ACS Nano 10 3630

    [21]

    Wang Z Y, Lee S H, Kim D H, Kim J H, Park J G 2010 Sol. Energy Mater. Sol. Cells 94 1591

    [22]

    Li J J, Diercks D R, Ohno T R, Warren C W, Lonergan M C, Beach J D, Wolden C A 2015 Sol. Energy Mater. Sol. Cells 133 208

    [23]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695

  • [1] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [2] 赵兴, 李丹妮, 李美成. 反式钙钛矿太阳电池中钾离子掺杂NiO提升电荷收集能力研究. 物理学报, 2024, 73(24): 247801. doi: 10.7498/aps.73.20240974
    [3] 尉渊, 邢若飞, 杜慧恬, 周倩, 范继辉, 庞智勇, 韩圣浩. 通过pH值精细调控氧化镍纳米颗粒粒度提升反式钙钛矿太阳能电池性能. 物理学报, 2023, 72(1): 018101. doi: 10.7498/aps.72.20221640
    [4] 李学锐, 林俊辉, 唐戎, 郑壮豪, 苏正华, 陈烁, 范平, 梁广兴. 新型硒化锑薄膜太阳电池背接触优化. 物理学报, 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [5] 曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化. 物理学报, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [6] 王顺利, 王亚超, 郭道友, 李超荣, 刘爱萍. NiO/GaN p-n结紫外探测器及自供电技术. 物理学报, 2021, 70(12): 128502. doi: 10.7498/aps.70.20210154
    [7] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [8] 肖友鹏, 王怀平, 李刚龙. Graphene/Ag2ZnSnSe4诱导p-n结薄膜太阳电池数值模拟. 物理学报, 2021, 70(1): 018801. doi: 10.7498/aps.70.20201194
    [9] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [10] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [11] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [12] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [13] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静. 硒化锑薄膜太阳电池的模拟与结构优化研究. 物理学报, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [14] 龚伟, 徐征, 赵谡玲, 刘晓东, 杨倩倩, 樊星. NPB阳极缓冲层对反型结构聚合物太阳能电池性能的影响. 物理学报, 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [15] 骆杨, 段羽, 陈平, 臧春亮, 谢月, 赵毅, 刘式墉. 利用空间电荷限制电流方法确定三(8-羟基喹啉)铝的电子迁移率特性初步研究. 物理学报, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [16] 刘瑞, 徐征, 赵谡玲, 张福俊, 曹晓宁, 孔超, 曹文喆, 龚伟. 利用不同阴极缓冲层来改善Pentacene/C60太阳能电池的性能. 物理学报, 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [17] 魏玮, 刘明, 曲盛薇, 张庆瑜. Ti缓冲层及退火处理对Si(111)基片上生长的ZnO薄膜结构和发光特性的影响. 物理学报, 2009, 58(8): 5736-5743. doi: 10.7498/aps.58.5736
    [18] 金 鑫, 张晓丹, 雷志芳, 熊绍珍, 宋 峰, 赵 颖. 薄膜太阳电池用纳米上转换材料制备及其特性研究. 物理学报, 2008, 57(7): 4580-4584. doi: 10.7498/aps.57.4580
    [19] 谢清连, 阎少林, 赵新杰, 方 兰, 季 鲁, 张玉婷, 游石头, 李加蕾, 张 旭, 周铁戈, 左 涛, 岳宏卫. 高温退火对蓝宝石基片的表面形貌和对CeO2缓冲层以及Tl-2212超导薄膜生长的影响. 物理学报, 2008, 57(1): 519-525. doi: 10.7498/aps.57.519
    [20] 甄聪棉, 马 丽, 张金娟, 刘 英, 聂向富. Ti(Cr)缓冲层对用于垂直磁记录材料CoCrTa介质磁特性和微结构的影响. 物理学报, 2007, 56(3): 1730-1734. doi: 10.7498/aps.56.1730
计量
  • 文章访问数:  6090
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-02
  • 修回日期:  2017-02-09
  • 刊出日期:  2017-06-05

/

返回文章
返回