搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉曼光谱研究退火氧化镍中二阶磁振子散射增强

宋梦婷 张悦 黄文娟 候华毅 陈相柏

引用本文:
Citation:

拉曼光谱研究退火氧化镍中二阶磁振子散射增强

宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏

Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy

Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 运用激光拉曼光谱研究了450—1050 ℃退火处理对氧化镍中二阶磁振子散射的增强效应, 同时分析了激光功率对氧化镍中二阶磁振子散射的影响. 研究发现, 退火处理可显著增强氧化镍中二阶磁振子散射, 在450—1050 ℃范围内, 退火温度越高, 增强效应越明显, 经过1050 ℃退火处理后二阶磁振子散射增强效应可达两个数量级以上. 该显著增强效应与高温退火处理后氧化镍样品中镍缺陷的显著减少紧密相关, 同时也与镍离子的晶格排列结构紧密相关. 而且高温退火处理还可显著降低激光功率对氧化镍中二阶磁振子散射的影响. 当退火温度较低时, 氧化镍中二阶磁振子散射随激光功率的增加快速减弱并消失, 而经过1050 ℃退火处理后, 氧化镍中二阶磁振子散射在较高激光功率下仍非常显著.
    Laser Raman spectroscopy is used to study the enhancement effect of two-magnon scattering in nickel oxide through annealing treatment in a temperature range from 450 ℃ to 1050 ℃, and investigate laser heating effect on two-magnon scattering. Our study shows that two-magnon scattering of nickel oxide can be tremendously enhanced with annealing temperature rising. In the temperature range from 450 ℃ to 1050 ℃, the enhancement increases with annealing temperature increasing, and with 1050 ℃ annealing the two-magnon scattering can be enhanced more than two orders of magnitude, also the enhancement of two-magnon scattering is much stronger than that of two-phonon scattering. This tremendous enhancement is correlated not only with the significant decrease of Ni-vacancy by high temperature annealing, but also with the magnetic spin ordering network of Ni ions. The variation of sensitive intensity of two-magnon scattering with the concentration of Ni-vacancy can be used to provide a simple Raman spectroscopy method of quantitatively measuring the Ni-vacancy in nickel oxide. In addition, the annealing treatment can significantly reduce the laser heating effect on two-magnon scatting in nickel oxide power samples. At low annealing temperature, the intensity of two-magnon scattering quickly quenches with increasing laser power. With 1050 ℃ annealing, the laser heating effect on two-magnon scattering is significantly reduced and two-magnon scattering can still have strong intensity at high laser power.
      通信作者: 黄文娟, wjhuang@wit.edu.cn ; 陈相柏, xchen@wit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51902227, 11574241)和华中科技大学材料成形与模具技术国家重点实验室开放课题研究基金(批准号: P2020-021)资助的课题
      Corresponding author: Huang Wen-Juan, wjhuang@wit.edu.cn ; Chen Xiang-Bai, xchen@wit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51902227, 11574241) and the Open Project of State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, China (Grant No. P2020-021)
    [1]

    Dharmaraj N, Prabu P, Nagarajan S, Kim C H, Park J H, Kim H Y 2006 Mater. Sci. Eng. B 128 111Google Scholar

    [2]

    Chen Z Y, Chen Y Q, Zhang Q K, Tang X Q, Wang D D, Chen Z Q, Mascher P, Wang S J 2017 ECS J. Solid State Sci. Technol. 6 798Google Scholar

    [3]

    Mishra Sunil K, Subrahmanyam V 2011 Int. J. Mod. Phys. B 25 2507Google Scholar

    [4]

    Gandhi S, Nagalakshmi N, Baskaran I, Dhanalakshmi V, Gopinathan Nair M R, Anbarasan R 2010 J. Appl. Polym. Sci. 118 1666Google Scholar

    [5]

    Wang Y, Zhu J, Yang X, Lu L, Wang X 2005 Thermochim. Acta 437 106Google Scholar

    [6]

    Plashnitsa V V, Gupta V, Miura N 2010 Electrochim. Acta 55 6941Google Scholar

    [7]

    Chen X B, Kong M H, Choi J Y, Kim H T 2016 J. Phys. D: Appl. Phys. 49 465304Google Scholar

    [8]

    Chen X B, Guo P C, Huyen N T, Kim S, Yang I S, Wang X Y, Cheong S W 2017 Appl. Phys. Lett. 110 122405Google Scholar

    [9]

    Nam J Y, Kim S, Nguyen H T M, Chen X B, Choi M S, Lee D, Noh T W, Yang I S 2020 J. Raman Spectrosc. 51 2298Google Scholar

    [10]

    Gandhi A C, Huang C Y, Yang C C, Chan T S, Cheng C L, Ma Y R, Wu S Y 2011 Nanoscale Res. Lett. 6 485Google Scholar

    [11]

    Sunny A, Balasubramanian K 2020 J. Phys. Chem. C 124 12636Google Scholar

    [12]

    Mironova-Ulmane N, Kuzmin A, Sildos I, Puust L, Grabis J 2019 Latv. J. Phys. Tech. Sci. 56 61Google Scholar

    [13]

    Deshpande M P, Patel K N, Gujarati V P, Patel K, Chaki S H 2016 Adv. Mater. Res. 1141 65Google Scholar

    [14]

    Lockwood D J, Cottam M G, Baskey J H 1992 J. Magn. Magn. Mater. 104-107 1053Google Scholar

    [15]

    Duan W J, Lu S H, Wu Z L, Wang Y S 2012 J. Phys. Chem. C 116 26043Google Scholar

    [16]

    Gandhi A C, Pant J, Pandit S D, Dalimbkar S K, Chan T S, Cheng C L, Ma Y R, Sheng Y W 2013 J. Phys. Chem. C 117 18666Google Scholar

    [17]

    Lacerda M M, Kargar F, Aytan E, Samnakay R, Debnath B, Li J X, Khitun A, Lake R K, Shi J, Balandin A A 2017 Appl. Phys. Lett. 110 202406Google Scholar

    [18]

    Baran S, Hoser A, Penc B, Szytula A 2016 Acta Phys. Pol. A 129 35Google Scholar

    [19]

    Hou H Y, Yang M, Qiu J, Yang Y S, Chen X B 2019 Cryst. 9 357Google Scholar

    [20]

    Bala N, Singh H K, Verma S, Rath S 2020 Phys. Rev. B 102 024423Google Scholar

    [21]

    Dietz R E, Parisot G I, Meixner A E 1971 Phys. Rev. B 4 2302Google Scholar

  • 图 1  氧化镍原始样品及经过450, 550, 650, 750, 850, 950和1050 ℃等温度退火处理后的拉曼光谱

    Fig. 1.  Raman spectra of the original nickel oxide powder and annealed at temperatures of 450, 550, 650, 750, 850, 950, 1050 ℃.

    图 2  (a) 归一化2M散射强度与退火温度的关系. 插图为六角锰氧化物中磁振子散射强度与非磁性离子浓度的关系[9]. (b) 2M与2LO散射强度比及归一化2M散射强度的对数与退火温度的关系

    Fig. 2.  (a) Normalized 2M intensity as a function of annealing temperature. Inset is the magnon scattering intensity as a function of non-magnetic doping concentration in hexagonal manganite[9]. (b) Logarithms of 2M to 2LO intensity ratio and normalized 2M intensity as a function of annealing temperature.

    图 3  (a) 850 ℃, (b) 950 ℃, (c) 1050 ℃退火处理氧化镍在0.5, 1, 2, 3, 5, 7 mW等不同激光功率下的拉曼光谱

    Fig. 3.  Raman spectra of the nickel oxide annealed at (a) 850 ℃, (b) 950 ℃, (c) 1050 ℃ under different laser power of 0.5, 1, 2, 3, 5, 7 mW.

    图 4  不同退火温度氧化镍拉曼光谱中(a) 2M和2LO拉曼峰强度对比, 及(b) 2M拉曼峰偏移随激光功率的变化

    Fig. 4.  Laser power dependence of (a) 2M to 2LO intensity ratio, and (b) 2M Raman shift at different annealing temperatures.

  • [1]

    Dharmaraj N, Prabu P, Nagarajan S, Kim C H, Park J H, Kim H Y 2006 Mater. Sci. Eng. B 128 111Google Scholar

    [2]

    Chen Z Y, Chen Y Q, Zhang Q K, Tang X Q, Wang D D, Chen Z Q, Mascher P, Wang S J 2017 ECS J. Solid State Sci. Technol. 6 798Google Scholar

    [3]

    Mishra Sunil K, Subrahmanyam V 2011 Int. J. Mod. Phys. B 25 2507Google Scholar

    [4]

    Gandhi S, Nagalakshmi N, Baskaran I, Dhanalakshmi V, Gopinathan Nair M R, Anbarasan R 2010 J. Appl. Polym. Sci. 118 1666Google Scholar

    [5]

    Wang Y, Zhu J, Yang X, Lu L, Wang X 2005 Thermochim. Acta 437 106Google Scholar

    [6]

    Plashnitsa V V, Gupta V, Miura N 2010 Electrochim. Acta 55 6941Google Scholar

    [7]

    Chen X B, Kong M H, Choi J Y, Kim H T 2016 J. Phys. D: Appl. Phys. 49 465304Google Scholar

    [8]

    Chen X B, Guo P C, Huyen N T, Kim S, Yang I S, Wang X Y, Cheong S W 2017 Appl. Phys. Lett. 110 122405Google Scholar

    [9]

    Nam J Y, Kim S, Nguyen H T M, Chen X B, Choi M S, Lee D, Noh T W, Yang I S 2020 J. Raman Spectrosc. 51 2298Google Scholar

    [10]

    Gandhi A C, Huang C Y, Yang C C, Chan T S, Cheng C L, Ma Y R, Wu S Y 2011 Nanoscale Res. Lett. 6 485Google Scholar

    [11]

    Sunny A, Balasubramanian K 2020 J. Phys. Chem. C 124 12636Google Scholar

    [12]

    Mironova-Ulmane N, Kuzmin A, Sildos I, Puust L, Grabis J 2019 Latv. J. Phys. Tech. Sci. 56 61Google Scholar

    [13]

    Deshpande M P, Patel K N, Gujarati V P, Patel K, Chaki S H 2016 Adv. Mater. Res. 1141 65Google Scholar

    [14]

    Lockwood D J, Cottam M G, Baskey J H 1992 J. Magn. Magn. Mater. 104-107 1053Google Scholar

    [15]

    Duan W J, Lu S H, Wu Z L, Wang Y S 2012 J. Phys. Chem. C 116 26043Google Scholar

    [16]

    Gandhi A C, Pant J, Pandit S D, Dalimbkar S K, Chan T S, Cheng C L, Ma Y R, Sheng Y W 2013 J. Phys. Chem. C 117 18666Google Scholar

    [17]

    Lacerda M M, Kargar F, Aytan E, Samnakay R, Debnath B, Li J X, Khitun A, Lake R K, Shi J, Balandin A A 2017 Appl. Phys. Lett. 110 202406Google Scholar

    [18]

    Baran S, Hoser A, Penc B, Szytula A 2016 Acta Phys. Pol. A 129 35Google Scholar

    [19]

    Hou H Y, Yang M, Qiu J, Yang Y S, Chen X B 2019 Cryst. 9 357Google Scholar

    [20]

    Bala N, Singh H K, Verma S, Rath S 2020 Phys. Rev. B 102 024423Google Scholar

    [21]

    Dietz R E, Parisot G I, Meixner A E 1971 Phys. Rev. B 4 2302Google Scholar

  • [1] 尉渊, 邢若飞, 杜慧恬, 周倩, 范继辉, 庞智勇, 韩圣浩. 通过pH值精细调控氧化镍纳米颗粒粒度提升反式钙钛矿太阳能电池性能. 物理学报, 2023, 72(1): 018101. doi: 10.7498/aps.72.20221640
    [2] 李加红, 孙贵花, 张庆礼, 王小飞, 张德明, 刘文鹏, 高进云, 郑丽丽, 韩松, 陈照, 殷绍唐. 退火气氛对GdScO3和Yb:GdScO3晶体的结构和光谱性质的影响. 物理学报, 2022, 71(16): 164206. doi: 10.7498/aps.71.20220196
    [3] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱. 物理学报, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [4] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [5] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [6] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [7] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响. 物理学报, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [8] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究. 物理学报, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [9] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性. 物理学报, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [10] 贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁. 浅析电子型掺杂铜氧化物超导体的退火过程. 物理学报, 2015, 64(21): 217402. doi: 10.7498/aps.64.217402
    [11] 朱剑云, 刘璐, 李育强, 徐静平. 退火工艺对LaTiON和HfLaON存储层金属-氧化物-氮化物-氧化物-硅存储器特性的影响. 物理学报, 2013, 62(3): 038501. doi: 10.7498/aps.62.038501
    [12] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [13] 张磊, 叶辉, 皇甫幼睿, 刘旭. 氧化硅缓冲层对于退火形成锗量子点的作用研究. 物理学报, 2011, 60(7): 076103. doi: 10.7498/aps.60.076103
    [14] 胡美娇, 李成, 徐剑芳, 赖虹凯, 陈松岩. 循环氧化/退火制备GeOI薄膜材料及其性质研究. 物理学报, 2011, 60(7): 078102. doi: 10.7498/aps.60.078102
    [15] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子. 物理学报, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [16] 张洪华, 张崇宏, 李炳生, 周丽宏, 杨义涛, 付云翀. 碳化硅中氦离子高温注入引入的缺陷及其退火行为的光谱研究. 物理学报, 2009, 58(5): 3302-3308. doi: 10.7498/aps.58.3302
    [17] 周丽宏, 张崇宏, 李炳生, 杨义涛, 宋 银. 注入Ar+的蓝宝石晶体退火前后光致发光谱的分析. 物理学报, 2008, 57(4): 2562-2566. doi: 10.7498/aps.57.2562
    [18] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [19] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱. 物理学报, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [20] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
计量
  • 文章访问数:  9077
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 修回日期:  2021-04-20
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回