搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析

李酽 张琳彬 李娇 连晓雪 朱俊武

引用本文:
Citation:

电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析

李酽, 张琳彬, 李娇, 连晓雪, 朱俊武

Crystallization characteristics of zinc oxide under electric field and Raman spectrum analysis of polarized products

Li Yan, Zhang Lin-Bin, Li Jiao, Lian Xiao-Xue, Zhu Jun-Wu
PDF
HTML
导出引用
  • 开展高压电场调控纳米材料结构形貌和性能研究在功能材料领域具有重要的理论和实际意义. 本文在高压电场条件下合成了氧化锌纳米粉体, 并对粉末试片进行了后期电场极化处理, 研究了电场对氧化锌的结构形貌、点缺陷、拉曼光谱的影响. 以X射线衍射仪(XRD)、扫描电镜(SEM)和拉曼光谱仪对产物的结构形貌、拉曼位移、缺陷分布等进行了表征. 结果表明, 高压电场条件下氧化锌的完全晶化时间和温度比未施加电场时明显延长和升高, 直流电场能够显著促进前驱物中氧化锌的形核, 并降低晶化速度. 不同电场强度下氧化锌具有不同的显微形貌. 纳米氧化锌粉末试片在直流电场中极化后, 其阴极面和阳极面的拉曼光谱表现出明显的差异. 有明显漏电电流的情况下, 阳极面在1050 cm–1处的二级光学声子模A1(LO)的强度显著提高, 且拉曼强度I1 = 438 cm–1I2 = 1050 cm–1的比值与极化电场的场强呈线性关系. 当调转试片正反面进行二次极化时, 原来在阳极面尖锐的1050 cm–1峰经过阴极极化而消失. 阳极面1050 cm–1拉曼峰的锐化与氧化锌晶粒内的缺陷重新分布和双肖脱基势垒有关.
    It is of great theoretical and practical significance to study the regulation of the structure, morphology and properties of nanomaterials by using high voltage electric field in the field of functional materials. Here, ZnO nanocrystalline powders are synthesized under the condition of high voltage electric field. The effect of electric field on the structure, point defect and Raman spectrum of ZnO is studied.The structure, Raman shift and defect distribution of the product are characterized by (XRD), scanning electron microscope (SEM) and Raman spectroscopy (Raman spectroscopy).The results show that the complete crystallization time and temperature of zinc oxide under high voltage electric field are longer and higher than those without electric field. The direct current electric field can significantly promote the nucleation of zinc oxide in the precursor and reduce the rate of crystallization.The morphologies of ZnO obtained under different electric field intensities are obviously different. At a lower electric field intensity, ZnO presents lamellar or stripy morphology that is formed by many 50 nm-diameter nanoparticles. At a higher electric field intensity, ZnO exhibits short conical particles. It can be inferred that the high voltage electric field inhibits the growth of zinc oxide along the c axis (the strongest polar direction).The Raman spectra of the cathode surface and the anode surface showing obvious difference after the nano-ZnO powder has been polarized in the DC electric field.The intensity of the second-order optical phonon mode A1(LO) on the anode surface at 1050 cm–1 increases significantly under the condition of obvious leakage current, and the ratio (I1/I2) of Raman intensity (I1 = 438 cm–1 and I2 = 1050 cm–1) is linearly related to the field strength of the polarized electric field.When the positive and negative sides of the sample disc turn over, the 1050 cm–1 peak increases on the anode surface and tends to disappear on cathode surface.The zinc vacancies with negative charge move toward the anode and the concentration of zinc vacancies on one side of the anode increases significantly, which makes the surface of zinc oxide nanoparticles in the local area of the anode surface exhibit obvious negative electric properties, and increases the local electric field significantly to form a double Shaw base barrier.The Raman shift of 1050 cm–1 belongs to the second order optical phonon A1 (LO) vibrational mode, which is usually in inactive or silent state. When the current passes through, the grain boundary double Schottky barrier is established, which enhances the vibration of the A1 (LO) phonon and increases its Raman frequency shift.It can be concluded that the enhancement of the 1050 cm–1 Raman peak on the anode surface is related to the redistribution of defects in ZnO grains and the double Schottky barrier.
      通信作者: 李酽, liyan01898@163.com
    • 基金项目: 软化学与功能材料教育部重点实验室(批准号: 30916014103)开放基金资助的课题.
      Corresponding author: Li Yan, liyan01898@163.com
    • Funds: Project supported by Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education (Grant No. 30916014103).
    [1]

    Zhao L H, Gao Z Y, Zhang J, Lu L W, Zou D S 2018 Appl. Phys. Express 11 115001Google Scholar

    [2]

    Singh B K, Tripathi S 2018 J. Lumin. 198 427Google Scholar

    [3]

    Savarimuthu K, Sankararajan R, Govindaraj R, Narendhiran S 2018 Nanoscale 10 16022Google Scholar

    [4]

    Sivakumar A, Murugesan B, Loganathan A, Sivakumar P 2017 J. Taiwan Inst. Chem. E 78 462Google Scholar

    [5]

    Tang X Y, Gao H, Wu L L, Wen J, Pan S M, Liu X, Zhang X T 2015 Chinese Phys. B 24 394Google Scholar

    [6]

    Wang S B, Wu Y C, Miao R, Zhang M W, Lu X X, Zhang B, Kinstler A, Ren Z Y, Guo Y B, Lu T F, Suib S L, Gao P X 2017 Cryst. Eng. Comm. 19 5128Google Scholar

    [7]

    Sapkota G, Gryczynski K, Mcdougald R, Neogi A, Philipose U 2012 J. Electron Mater. 41 2155Google Scholar

    [8]

    Omidvar A 2018 Vacuum 147 126Google Scholar

    [9]

    Patterson S, Arora P, Price P, Dittmar J W, Das V K, Pink M, Stein B, Morgan D G, Losovyj Y, Koczkur K M, Skrabalak S E, Bronstein L M 2017 Langmuir 33 14709Google Scholar

    [10]

    Meng P F, Yang X, Hu J, He J L 2017 Mater. Lett. 209 413Google Scholar

    [11]

    Li Y, Zhao F X, Lian X X 2016 Mater. Sci-Poland 34 708Google Scholar

    [12]

    Wu W H, Tang S B, Gu J J, Cao X R 2015 Rsc. Adv. 5 99153Google Scholar

    [13]

    Kou L Z, Zhang Y, Li C, Guo W L, Chen C F 2011 J. Phys. Chem. C 115 2381Google Scholar

    [14]

    Jammula R K, Srikanth V V S S, Hazra B K, Srinath S 2016 Mater. Design 110 311Google Scholar

    [15]

    Gorai P, Seebauer E G 2017 Solid State Ionics 301 95Google Scholar

    [16]

    Xue F, Zhang L M, Feng X L, Hu G F, Fan F R, Wen X N, Zheng L, Wang Z L 2015 Nano Res. 8 2390Google Scholar

    [17]

    Nakamura T, Nagata T, Hayakawa R, Yoshimura T, Oh S, Hiroshiba N, Chikyow T, Fujimura N, Wakayama Y 2017 Jpn. J. Appl. Phys. 56 032501Google Scholar

    [18]

    Li C P, Dai W, Xu S, Li X W, Gao C Y, Chen X M, Yang B H 2015 J. Electron Mater. 44 1095Google Scholar

    [19]

    Mikkelsen A, Wojciechowski J, Rajnak M, Kurimsky J, Khobaib K, Kertmen A, Rozynek Z 2017 Materials 10 329Google Scholar

    [20]

    Li C, Vaynzof Y, Lakhwani G, Beirne G J, Wang J P, Greenham N C 2017 J. Appl. Phys. 121 144503Google Scholar

    [21]

    安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华 2013 物理学报 62 073103Google Scholar

    An Y H, Xiong B T, Xing Y, Shen J X, Li P G, Zhu Z Y, Tang W H 2013 Acta Phys. Sin. 62 073103Google Scholar

    [22]

    李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武 2018 物理学报 67 140701Google Scholar

    Li Y, Li J, Chen L L, Lian X X, Zhu J W 2018 Acta Phys. Sin. 67 140701Google Scholar

    [23]

    Hansen M, Truong J, Xie T, Hahm J I 2017 Nanoscal 9 8470Google Scholar

    [24]

    Cusco R, Alarcon-Llado E, Ibanez J, Artus L, Jimenez J, Wang B G, Callahan M J 2007 Phys. Rev. B 75 5202Google Scholar

    [25]

    Lorite I, Diaz-Carrasco P, Gabas M, Fernandez J F, Costa-Kramer J L 2013 Mater. Lett. 109 167Google Scholar

    [26]

    Du G T, Ma Y, Zhang Y T, Yang T P 2005 Appl. Phys. Lett. 87 946Google Scholar

  • 图 1  高压直流电场条件下纳米氧化锌晶化实验装置示意图

    Fig. 1.  Schematic diagram of experimental device for nano ZnO crystallization under high voltage DC electric field.

    图 2  不同晶化时间纳米氧化锌的XRD图谱. (a)无外电场; (b)有外电场

    Fig. 2.  XRD patterns of nano-ZnO synthesized for different time: (a) Without external electric field; (b) under external electric field

    图 3  不同晶化温度所得纳米氧化锌的XRD图谱 (a)无外电场; (b)有外电场

    Fig. 3.  XRD patterns of nano-ZnO synthesized at different temperatures: (a) Without external electric field; (b) under external electric field.

    图 4  不同电场强度下合成纳米氧化锌的显微形貌 (a)1 kV/cm; (b)4 kV/cm; (c)6 kV/cm; (d)7 kV/cm

    Fig. 4.  Microphotographs of nano-ZnO synthesized under different electric field intensities: (a) 1 kV/cm; (b) 4 kV/cm; (c) 6 kV/cm; (d) 7 kV/cm

    图 5  纳米氧化锌极化产物的拉曼光谱图 (a)阴极面; (b)阳极面

    Fig. 5.  Raman spectra of polarized nano-ZnO: (a) Cathode surface; (b) anode surface.

    图 6  漏电电流及拉曼峰1050 cm–1强度与电场强度之间的关系

    Fig. 6.  Relationship of leakage current, and 1050 cm–1 Raman intensity with electric intensity

    图 7  拉曼峰438 cm–1和1050 cm–1的强度比(I1/I2)与电场强度的关系

    Fig. 7.  Relationship of strength ratio of Raman peak I1(438 cm–1)/I2(1050 cm–1) with electric field intensity.

    图 8  二次反向极化后纳米氧化锌拉曼图谱的变化

    Fig. 8.  Changes of Raman spectra of nano-ZnO after secondary reverse polarization

  • [1]

    Zhao L H, Gao Z Y, Zhang J, Lu L W, Zou D S 2018 Appl. Phys. Express 11 115001Google Scholar

    [2]

    Singh B K, Tripathi S 2018 J. Lumin. 198 427Google Scholar

    [3]

    Savarimuthu K, Sankararajan R, Govindaraj R, Narendhiran S 2018 Nanoscale 10 16022Google Scholar

    [4]

    Sivakumar A, Murugesan B, Loganathan A, Sivakumar P 2017 J. Taiwan Inst. Chem. E 78 462Google Scholar

    [5]

    Tang X Y, Gao H, Wu L L, Wen J, Pan S M, Liu X, Zhang X T 2015 Chinese Phys. B 24 394Google Scholar

    [6]

    Wang S B, Wu Y C, Miao R, Zhang M W, Lu X X, Zhang B, Kinstler A, Ren Z Y, Guo Y B, Lu T F, Suib S L, Gao P X 2017 Cryst. Eng. Comm. 19 5128Google Scholar

    [7]

    Sapkota G, Gryczynski K, Mcdougald R, Neogi A, Philipose U 2012 J. Electron Mater. 41 2155Google Scholar

    [8]

    Omidvar A 2018 Vacuum 147 126Google Scholar

    [9]

    Patterson S, Arora P, Price P, Dittmar J W, Das V K, Pink M, Stein B, Morgan D G, Losovyj Y, Koczkur K M, Skrabalak S E, Bronstein L M 2017 Langmuir 33 14709Google Scholar

    [10]

    Meng P F, Yang X, Hu J, He J L 2017 Mater. Lett. 209 413Google Scholar

    [11]

    Li Y, Zhao F X, Lian X X 2016 Mater. Sci-Poland 34 708Google Scholar

    [12]

    Wu W H, Tang S B, Gu J J, Cao X R 2015 Rsc. Adv. 5 99153Google Scholar

    [13]

    Kou L Z, Zhang Y, Li C, Guo W L, Chen C F 2011 J. Phys. Chem. C 115 2381Google Scholar

    [14]

    Jammula R K, Srikanth V V S S, Hazra B K, Srinath S 2016 Mater. Design 110 311Google Scholar

    [15]

    Gorai P, Seebauer E G 2017 Solid State Ionics 301 95Google Scholar

    [16]

    Xue F, Zhang L M, Feng X L, Hu G F, Fan F R, Wen X N, Zheng L, Wang Z L 2015 Nano Res. 8 2390Google Scholar

    [17]

    Nakamura T, Nagata T, Hayakawa R, Yoshimura T, Oh S, Hiroshiba N, Chikyow T, Fujimura N, Wakayama Y 2017 Jpn. J. Appl. Phys. 56 032501Google Scholar

    [18]

    Li C P, Dai W, Xu S, Li X W, Gao C Y, Chen X M, Yang B H 2015 J. Electron Mater. 44 1095Google Scholar

    [19]

    Mikkelsen A, Wojciechowski J, Rajnak M, Kurimsky J, Khobaib K, Kertmen A, Rozynek Z 2017 Materials 10 329Google Scholar

    [20]

    Li C, Vaynzof Y, Lakhwani G, Beirne G J, Wang J P, Greenham N C 2017 J. Appl. Phys. 121 144503Google Scholar

    [21]

    安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华 2013 物理学报 62 073103Google Scholar

    An Y H, Xiong B T, Xing Y, Shen J X, Li P G, Zhu Z Y, Tang W H 2013 Acta Phys. Sin. 62 073103Google Scholar

    [22]

    李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武 2018 物理学报 67 140701Google Scholar

    Li Y, Li J, Chen L L, Lian X X, Zhu J W 2018 Acta Phys. Sin. 67 140701Google Scholar

    [23]

    Hansen M, Truong J, Xie T, Hahm J I 2017 Nanoscal 9 8470Google Scholar

    [24]

    Cusco R, Alarcon-Llado E, Ibanez J, Artus L, Jimenez J, Wang B G, Callahan M J 2007 Phys. Rev. B 75 5202Google Scholar

    [25]

    Lorite I, Diaz-Carrasco P, Gabas M, Fernandez J F, Costa-Kramer J L 2013 Mater. Lett. 109 167Google Scholar

    [26]

    Du G T, Ma Y, Zhang Y T, Yang T P 2005 Appl. Phys. Lett. 87 946Google Scholar

  • [1] 张钰业, 张镱议, 韦文厂, 苏至诚, 兰丹泉, 罗世豪. 纳米氧化锌改性纤维素绝缘纸力学和热学性能的分子动力学模拟. 物理学报, 2024, 73(12): 127701. doi: 10.7498/aps.73.20240208
    [2] 齐凯, 朱星光, 王军, 夏国栋. 外电场作用下纳米结构表面的固-液界面传热特性. 物理学报, 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [3] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [4] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [5] 李明阳, 张雷敏, 吕沙沙, 李正操. 离子辐照和氧化对IG-110核级石墨中的点缺陷的影响. 物理学报, 2019, 68(12): 128102. doi: 10.7498/aps.68.20190371
    [6] 谢修华, 李炳辉, 张振中, 刘雷, 刘可为, 单崇新, 申德振. 点缺陷调控: 宽禁带II族氧化物半导体的机遇与挑战. 物理学报, 2019, 68(16): 167802. doi: 10.7498/aps.68.20191043
    [7] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [8] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响. 物理学报, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [9] 李世雄, 张正平, 隆正文, 秦水介. 硼球烯B40在外电场下的基态性质和光谱特性. 物理学报, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [10] 杨涛, 刘代俊, 陈建钧. 外电场下二氧化硫的分子结构及其特性. 物理学报, 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [11] 吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋. 外电场下CdSe的基态性质和光谱特性研究. 物理学报, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [12] 厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳. 缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系. 物理学报, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [13] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究. 物理学报, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [14] 杜建宾, 唐延林, 隆正文. 外电场作用下的五氯酚分子结构和电子光谱的研究. 物理学报, 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [15] 何建勇, 隆正文, 龙超云, 蔡绍洪. 电场作用下CaS的分子结构和电子光谱. 物理学报, 2010, 59(3): 1651-1657. doi: 10.7498/aps.59.1651
    [16] 姜明, 苟富均, 闫安英, 张传武, 苗峰. BeO分子在不同方向外电场中的能量和光谱. 物理学报, 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [17] 徐国亮, 吕文静, 刘玉芳, 朱遵略, 张现周, 孙金锋. 外电场作用下二氧化硅分子的光激发特性研究. 物理学报, 2009, 58(5): 3058-3063. doi: 10.7498/aps.58.3058
    [18] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征. 物理学报, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [19] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [20] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究. 物理学报, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
计量
  • 文章访问数:  13912
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-05
  • 修回日期:  2019-01-22
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回