搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于瞬态光栅频率分辨光学开关法测量飞秒脉冲的研究

黄杭东 滕浩 詹敏杰 许思源 黄沛 朱江峰 魏志义

引用本文:
Citation:

基于瞬态光栅频率分辨光学开关法测量飞秒脉冲的研究

黄杭东, 滕浩, 詹敏杰, 许思源, 黄沛, 朱江峰, 魏志义

Measurement of femtosecond pulses based on transient grating frequency-resolved optical gating

Huang Hang-Dong, Teng Hao, Zhan Min-Jie, Xu Si-Yuan, Huang Pei, Zhu Jiang-Feng, Wei Zhi-Yi
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 超宽光谱的飞秒脉冲测量一直是超快激光领域的重要研究方向之一. 常规的飞秒脉冲自相关方法是通过测量自相关倍频信号来获得, 而倍频信号具有波长选择性, 不同中心波长的飞秒脉冲测量需要更换不同的倍频晶体, 十分不方便. 因此, 提出了一种改进型的瞬态光栅频率分辨光学开关(TG-FROG)方法用于测量飞秒脉冲. 该方法结合四波混频和频率分辨光学开关方法, 其基本过程是将待测脉冲分为三束, 其中两束脉冲经过精密的延时控制并聚焦在光学介质上达到时空重合, 利用三阶非线性效应产生稳定的瞬态光栅作为开关光; 另一束脉冲作为探测光与产生的瞬态光栅进行相互作用产生一个信号光, 使用光谱仪对该信号光的光谱与延迟时间进行测量, 并通过反演迭代算法处理而获取待测飞秒脉冲的光谱与电场信息. 该方法只需要待测光的功率密度达到三阶非线性效应就可以实现测量, 因此可以应用于任意中心波长的飞秒脉冲测量. 利用该方法对中心波长分别为800 nm, 400 nm的飞秒脉冲, 以及超连续亚10 fs的周期量级超宽光谱飞秒脉冲进行了测量, 并与常规的干涉自相关仪器测量结果进行了比较, 所得测量结果基本一致. 实验结果表明, 建立的基于TG-FROG方法对不同中心波长, 不同脉冲宽度的飞秒脉冲测量是十分有效的.
    Femtosecond pulse measurement of ultrafast spectrum is one of the important research directions in the ultrafast laser field. The conventional femtosecond pulse autocorrelation method is implemented by measuring the autocorrelated frequency-doubling signal, and the frequency-doubling signal has wavelength selectivity, so the femtosecond pulse measurement for the case of different central wavelengths needs to replace different frequency-doubling crystals, which is very inconvenient. This paper reports a kind of modified transient grating frequency resolution optical gating for measuring the femtosecond pulses. The method combines frequency-resolved optical gating (FROG) method with four-wave mixing. Its basic process is to divide the pulse to be measured into three beams. Two of the pulses can reach spatiotemporal coincidence on optical medium through precise delay control and focus. The other pulse interacts with the transient grating, and serves as the detection light to produce signal light. The spectrum and delay time of the signal light are measured by a spectrometer, and the spectrum and electric field information of the femtosecond pulse to be measured are obtained through the inversion iterative algorithm. Because this method only needs the power density of the measured light to reach the third-order nonlinear effect, it can be applied to the femtosecond pulse measurement of any central wavelength. We use this method to measure the femtosecond pulses with the central wavelengths of 800 nm and 400 nm respectively, and the ultra-wide spectrum femtosecond pulses with the period magnitude of sub-10 fs, and compare the measurement results with the results obtained with the conventional interferometric autocorrelation instrument. They are basically consistent. The experimental results show that our frequency-resolved optical switching method based on transient grating is very effective for measuring the femtosecond pulses with different central wavelengths and pulse widths.
      通信作者: 滕浩, hteng@iphy.ac.cn ; 魏志义, zywei@iphy.ac.cn
    • 基金项目: 中国科学院战略性先导科技专项(批准号: XDB070303000)和国家自然科学基金(批准号: 11674386)资助的课题.
      Corresponding author: Teng Hao, hteng@iphy.ac.cn ; Wei Zhi-Yi, zywei@iphy.ac.cn
    • Funds: Project supported by the Chinese Academy of Sciences (Grant No. XDB070303000) and the National Natural Science Foundation of China (Grant No. 11674386).
    [1]

    Fork R L, Greene B I, Shank C V 1981 Appl. Phys. Lett. 38 671Google Scholar

    [2]

    Ell R, Angelow G, Seitz W, Lederer M J, Heinz H, Kopf D, Birge J R, Kärtner F X 2005 Opt. Express. 13 9292Google Scholar

    [3]

    Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar

    [4]

    Zhang W, Teng H, Yun C X, Zhong X, Hou X, Wei Z Y 2010 Chin. Phys. Lett. 27 054211Google Scholar

    [5]

    He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar

    [6]

    Wirth A, Hassan M T, Grguraš I, Gagnon J, Moule t A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 195Google Scholar

    [7]

    Hassan M Th, Wirth A, Grguraš I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301Google Scholar

    [8]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [9]

    Weber H P 1967 J. Appl. Phys. 38 2231Google Scholar

    [10]

    Diels J C, Stryland E W V, Gold D 1978 Picosecond Phenomena (Berlin: Springer-Verlag) pp117−120

    [11]

    Kane D J, Trebino R 1993 IEEE J. Quantum Elect. 29 571Google Scholar

    [12]

    Delong K W, Trebino R 1994 J. Opt. Soc. Am. A 11 2429Google Scholar

    [13]

    Trebino R, Kane D J 1993 J. Opt. Soc. Am. A 10 1101Google Scholar

    [14]

    Kane D J, Trebino R 1993 Opt. Lett. 18 823Google Scholar

    [15]

    Delong K W, Trebino R, Hunter J, White W E 1994 J. Opt. Soc. Am. B 11 2206Google Scholar

    [16]

    Iaconis C, Walmsley I A 1999 IEEE J. Quantum Elect. 35 4

    [17]

    Li M, Nibarger J P, Guo C L, Gibson G N 1999 Appl. Optics 38 5250Google Scholar

    [18]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519Google Scholar

    [19]

    Zhang N H, Teng H, Huang H D, Tian W L, Zhu J F, Wu H P, Pan S L, Fang S B, Wei Z Y 2016 Chin. Phys. B 25 124204Google Scholar

    [20]

    黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义 2018 物理学报 67 214202Google Scholar

    Huang P, Fang S B, Huang H D, Zhao K, Teng H, Hou X, Wei Z Y 2018 Acta Phys. Sin. 67 214202Google Scholar

    [21]

    Eichler H J, Gunter P, Pohl D W 1985 Laser-Induced Dynamic Gratings (Berlin: Springer-Verlag) pp193—198

    [22]

    Eckbreth A C 1978 Appl. Phys. Lett. 32 421Google Scholar

  • 图 1  FROG迭代算法流程图

    Fig. 1.  Flow chart of FROG iterative algorithm.

    图 2  (a) TG-FROG光路结构和相位匹配条件示意图; (b)产生的瞬态光栅信号光

    Fig. 2.  (a) Schematic of TG-FROG optical structure and phase-match condition; (b) signal pulses generated by transient-grating

    图 3  自动满足相位匹配的TG-FROG装置图 H1: 三孔光阑; H2: 小孔光阑; D1、D2: D型反射镜; M1, M2: 凹面银镜; F: 熔石英玻璃片; S: 光谱仪

    Fig. 3.  Schematic diagram of the phase-matched TG-FROG apparatus.

    图 4  TG-FROG测量钛宝石激光脉冲结果 (a)实验测量的行迹图; (b)反演计算的行迹图; (b)光谱和相位信息; (d)脉冲电场强度分布

    Fig. 4.  Results of TG-FROG measurement for Ti sapphire laser pulse: (a) Measured trace; (b) reconstructed trace; (c) spectral intensity and phase; (d) distribution of retrieved temporal intensity.

    图 5  SPIDER测量钛宝石激光脉冲结果 (a)光谱干涉条纹; (b)光谱和相位信息; (c)脉冲电场强度分布

    Fig. 5.  Results of SPIDER measurement for Ti sapphire laser pulse: (a) Measured spectral interferogram; (b) spectral intensity and phase; (c) distribution of retrieved temporal intensity.

    图 6  干涉自相关仪测量钛宝石激光脉冲结果

    Fig. 6.  Result of interference autocorrelator measurement for Ti sapphire laser pulse.

    图 7  TG-FROG测量二倍频脉冲结果 (a)实验测量的行迹图; (b)反演计算的行迹图; (b)光谱以及相位信息; (d)脉冲电场强度分布

    Fig. 7.  Results of TG-FROG measurement for SHG laser pulse: (a) Measured trace; (b) reconstructed trace; (c) spectral intensity and phase; (d) distribution of retrieved temporal intensity.

    图 8  TG-FROG测量超连续光谱的脉冲结果 (a)实验测量的行迹图; (b)反演计算的行迹图; (b)光谱以及相位信息; (d)脉冲电场强度分布

    Fig. 8.  Results of TG-FROG measurement for supercontinuum laser pulse: (a) Measured trace; (b) reconstructed trace; (c) spectral intensity and phase; (d) distribution of retrieved temporal intensity.

  • [1]

    Fork R L, Greene B I, Shank C V 1981 Appl. Phys. Lett. 38 671Google Scholar

    [2]

    Ell R, Angelow G, Seitz W, Lederer M J, Heinz H, Kopf D, Birge J R, Kärtner F X 2005 Opt. Express. 13 9292Google Scholar

    [3]

    Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar

    [4]

    Zhang W, Teng H, Yun C X, Zhong X, Hou X, Wei Z Y 2010 Chin. Phys. Lett. 27 054211Google Scholar

    [5]

    He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar

    [6]

    Wirth A, Hassan M T, Grguraš I, Gagnon J, Moule t A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 195Google Scholar

    [7]

    Hassan M Th, Wirth A, Grguraš I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301Google Scholar

    [8]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [9]

    Weber H P 1967 J. Appl. Phys. 38 2231Google Scholar

    [10]

    Diels J C, Stryland E W V, Gold D 1978 Picosecond Phenomena (Berlin: Springer-Verlag) pp117−120

    [11]

    Kane D J, Trebino R 1993 IEEE J. Quantum Elect. 29 571Google Scholar

    [12]

    Delong K W, Trebino R 1994 J. Opt. Soc. Am. A 11 2429Google Scholar

    [13]

    Trebino R, Kane D J 1993 J. Opt. Soc. Am. A 10 1101Google Scholar

    [14]

    Kane D J, Trebino R 1993 Opt. Lett. 18 823Google Scholar

    [15]

    Delong K W, Trebino R, Hunter J, White W E 1994 J. Opt. Soc. Am. B 11 2206Google Scholar

    [16]

    Iaconis C, Walmsley I A 1999 IEEE J. Quantum Elect. 35 4

    [17]

    Li M, Nibarger J P, Guo C L, Gibson G N 1999 Appl. Optics 38 5250Google Scholar

    [18]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519Google Scholar

    [19]

    Zhang N H, Teng H, Huang H D, Tian W L, Zhu J F, Wu H P, Pan S L, Fang S B, Wei Z Y 2016 Chin. Phys. B 25 124204Google Scholar

    [20]

    黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义 2018 物理学报 67 214202Google Scholar

    Huang P, Fang S B, Huang H D, Zhao K, Teng H, Hou X, Wei Z Y 2018 Acta Phys. Sin. 67 214202Google Scholar

    [21]

    Eichler H J, Gunter P, Pohl D W 1985 Laser-Induced Dynamic Gratings (Berlin: Springer-Verlag) pp193—198

    [22]

    Eckbreth A C 1978 Appl. Phys. Lett. 32 421Google Scholar

  • [1] 黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义. 基于瞬态光栅频率分辨光学开关装置的阿秒延时相位控制. 物理学报, 2018, 67(21): 214202. doi: 10.7498/aps.67.20181570
    [2] 项晓, 王少锋, 侯飞雁, 权润爱, 翟艺伟, 王盟盟, 周聪华, 许冠军, 董瑞芳, 刘涛, 张首刚. 利用共振无源腔分析和抑制飞秒脉冲激光噪声的理论和实验研究. 物理学报, 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [3] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇. 基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量. 物理学报, 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [4] 郭淑艳, 叶蓬, 滕浩, 张伟, 李德华, 王兆华, 魏志义. 反射式棱栅对展宽器用于啁啾脉冲放大激光的研究. 物理学报, 2013, 62(9): 094202. doi: 10.7498/aps.62.094202
    [5] 韩祥临, 赵振江, 程荣军, 莫嘉琪. 飞秒脉冲激光对纳米金属薄膜传导模型的解. 物理学报, 2013, 62(11): 110202. doi: 10.7498/aps.62.110202
    [6] 姚洪斌, 郑雨军. NaI分子的非绝热效应. 物理学报, 2011, 60(12): 128201. doi: 10.7498/aps.60.128201
    [7] 胡长城, 叶慧琪, 王刚, 刘宝利. GaAs/AlGaAs多量子阱中载流子动力学的实验研究. 物理学报, 2011, 60(1): 017803. doi: 10.7498/aps.60.017803
    [8] 季忠刚, 王占新, 刘建胜, 李儒新. 激光波前相位因子对飞秒脉冲激光成丝动力学的影响. 物理学报, 2010, 59(11): 7885-7891. doi: 10.7498/aps.59.7885
    [9] 刘文军, 任守田, 曲士良. 在空间-时间域测量飞秒脉冲. 物理学报, 2010, 59(5): 3286-3289. doi: 10.7498/aps.59.3286
    [10] 刘桂媛, 滕树云, 程传福, 宋洪胜, 刘曼. 锥形镀膜光纤探针中飞秒激光脉冲的传输. 物理学报, 2009, 58(11): 7613-7620. doi: 10.7498/aps.58.7613
    [11] 赵研英, 韩海年, 滕浩, 魏志义. 采用多通腔望远镜谐振腔结构的10MHz重复频率飞秒钛宝石激光器特性研究. 物理学报, 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [12] 曹士英, 张志刚, 柴 路, 王清月. 钛宝石飞秒激光振荡器的稳定性改善. 物理学报, 2008, 57(5): 2971-2975. doi: 10.7498/aps.57.2971
    [13] 刘文军, 曹武刚, 郭金鑫, 刘海磊, 曲士良. 时域飞秒散斑的特性与测量. 物理学报, 2008, 57(4): 2192-2198. doi: 10.7498/aps.57.2192
    [14] 周斌斌, 张 炜, 詹敏杰, 魏志义. Gires-Tournois干涉镜补偿色散的自启动飞秒Cr4+:YAG激光器实验研究. 物理学报, 2008, 57(3): 1742-1745. doi: 10.7498/aps.57.1742
    [15] 刘 军, 陈晓伟, 刘建胜, 冷雨欣, 朱 毅, 戴 君, 李儒新, 徐至展. 负啁啾高强度飞秒脉冲在正常色散材料中传输特性研究. 物理学报, 2006, 55(4): 1821-1826. doi: 10.7498/aps.55.1821
    [16] 田金荣, 孙敬华, 魏志义, 王兆华, 令维军, 黄小军, 刘兰亭, 魏晓峰, 张 杰. ?ffner展宽器高倍率展宽脉冲的理论与实验研究. 物理学报, 2005, 54(3): 1200-1207. doi: 10.7498/aps.54.1200
    [17] 谢旭东, 王清月, 王 专, 张伟力, 柴 路. 超宽光谱掺钛蓝宝石飞秒激光器时域频域特性的实验研究. 物理学报, 2005, 54(7): 3159-3163. doi: 10.7498/aps.54.3159
    [18] 谢旭东, 王清月, 柴 路. 频域标定飞秒脉冲干涉自相关迹及钛宝石振荡器实时啁啾监测. 物理学报, 2005, 54(8): 3657-3660. doi: 10.7498/aps.54.3657
    [19] 邓 莉, 廖 睿, 刘叶新, 寿 倩, 文锦辉, 林位株. 亚10飞秒脉冲的诊断与压缩. 物理学报, 2003, 52(8): 1938-1942. doi: 10.7498/aps.52.1938
    [20] 杨辉, 邱阳, 腾浩, 张军, 苍宇, 吕铁铮, 王兆华, 王鸿飞, 魏志义, 张杰. 4.5MW小型化全固态腔倒空飞秒掺钛蓝宝石激光器. 物理学报, 2001, 50(10): 1930-1934. doi: 10.7498/aps.50.1930
计量
  • 文章访问数:  10982
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-28
  • 修回日期:  2019-02-18
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-05

/

返回文章
返回