搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场对对硝基氯苯分子结构与电子光谱影响的研究

李涛 唐延林 凌智钢 李玉鹏 隆正文

引用本文:
Citation:

外电场对对硝基氯苯分子结构与电子光谱影响的研究

李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文

Influence of external electric field on the molecular structure and electronic spectrum of paranitrochlorobenzene

Li Tao, Tang Yan-Lin, Ling Zhi-Gang, Li Yu-Peng, Long Zhen-Wen
PDF
导出引用
  • 为达到降解有机污染物硝基氯苯的目的, 采用外加平行电场的方法, 研究电场对硝基氯苯化合物的分子结构和电子光谱等的影响. 以对硝基氯苯分子为研究对象, 采用密度泛函B3LYP方法在6-311+g(d, p) 基组水平上优化并计算了不同外电场作用下pCNB的基态分子结构、电偶极矩和分子总能量, 在此基础上采用含时密度泛函研究了该分子的前六个激发态的波长、振子强度受外电场的影响规律.结果表明: C–Cl, C–N键长随电场增加而快速增大, 即键能快速减小, 同时苯环上的C–C, C–H键长的变化很小, 且有增有减, 说明分子的降解可能是C–Cl, C–N键断裂而苯环则相对稳定. 同时分子总能量随电场先增大后变小, 电偶极矩刚好相反.另外, 最大吸收波长λmax 随电场先缓慢减小, 后快速增大, 导致电子跃迁相对容易, 而振子强度随电场变化则相对比较复杂.
    In order to achieve the goal of degenerating organic pollutant nitrochlorobenzene, the influence of electric field on molecular structure and electronic spectrum and so on is studied by applying an external parallel electric field. Take paranitrochlorobenzene as a study object, the method B3LYP of the density functional theory at 6-311+g(d, p) level is used to calculate its molecucar structure, dipole moments and total energies of the ground state under different external electric fields (from 0 to 0.025 a.u.) in this paper. On this basis, the time-dependent density functional theory is used to study the influences of external electric field on excited wavelength and oscillator strength of the first six excited states. The results show that bond lengths (C–Cl, C–N) increase rapidly and bond energy decrease rapidly with the increase of field intensity. At the same time, bond length (C–C, C–H) changes of benzene ring are very small, and the increases or decreases are not uniform. This illustrates that molecular degradation may lead to the fractures of bonds (C–Cl, C–N), and the benzene ring is relatively stable. what is more, the molecular total energy first increases then decreases, and the dipole moment first decreases then increases with the increase of the field intensity. In addition , the maximum absorption wavelength first slowly decreases, and then increases rapidly with the increase of the field intensity, which causes the electron transition to be relatively easy, while oscillator strength changes relatively complex in anner.
    • 基金项目: 国家自然科学基金(批准号: 10664001, 41061039, 11164004)和 贵州省优秀青年科技人才基金(批准号: 200713)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10664001, 41061039, 11164004), and the Foundation of Excellent Youth Qualified Scientists and Technicians of Guizhou, China (Grant No. 200713).
    [1]

    Xu Y M, Dai X H, Sun Y, Lin D S 2008 J. Irriga. Drain 27 5 (in Chinese) [徐应明, 戴晓华, 孙 扬, 林大松 2008 灌溉排水学报 27 5]

    [2]

    Li Q, Minami M, Inagaki H 1998 Toxicology 127 223

    [3]

    Travlos G S, Mahler J, Ragan H A 1996 Fundament. Appl. Toxicol. 30 75

    [4]

    Xu X B, Dai S J, Huang Y Y 1998 Typical Changes and Ecological Effects of Chemical Contaminants in the Environment (Beijing: Science Press) pp88-115 (in Chinese) [徐晓白, 戴树桂, 黄玉瑶 1998典型化学污染物在环境中的变化及生态效应 (北京: 科学出版社) 第88–115页]

    [5]

    An T C, Zhang M L, Zhu X H, Xiong Y, Fu J M, Sheng G Y 2003 China Water & Wastewater 19(9) 25 (in Chinese) [安太成, 张茂林, 朱锡海, 熊亚, 傅家谟, 盛国英 2003中国给水排水 19(9) 25]

    [6]

    Wang S H, Ding G D, Hou H Q 2002 Techniq. Equipment Environ. Pollut. Control 3 14 (in Chinese) [王淑惠, 丁根娣, 侯惠奇 2002环境污染治理技术与设备 3 14]

    [7]

    Xu G L, Lü W J, Liu Y F, Zhu Z L, Zhang X Z, Sun J F 2009 Acta Phys. Sin. 58 3058 (in Chinese) [徐国亮, 吕文静, 刘玉芳, 朱遵略, 张现周, 孙金峰 2009 物理学报 58 3058]

    [8]

    Grozema F C, Telesca R, Joukman H T 2001Chem. Phys. 115 10014

    [9]

    Kjeellberg P, Zhi H, Tonu P J 2003 Phys. Chem. B 107 13737

    [10]

    Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Atom. Mol. Phys. 20 169 (in Chinese) [朱正和, 傅依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子物理学报 20 169]

    [11]

    Chen X J, Luo S Z, Jiang S B, Huang W, Gao X L, Ma M Z, Zhu Z H 2004 Chin. J. Atom. Mol. Phys. 21 203

    [12]

    Frisch M J, Trucks G W, Schegel H B 2003 Gaussian 03, Re-vision B 03, Pittsburgh P A: Gaussian, Inc.

    [13]

    Cai S H, Zhou Y H, He J Y 2011 Acta Phys. Sin. 60 093102 (in Chinese) [蔡绍洪, 周业宏, 何建勇 2011 物理学报 60 093102]

    [14]

    Ruan W, Luo W L, Zhang L, Zhu Z H 2008 Acta Phys. Sin. 57 6207 (in Chinese) [阮文, 罗文浪, 张莉, 朱正和 2008 物理学报 57 6207]

    [15]

    Fan K N 2001 Spectrum Guide (Beijing: Higher Education Press) p95 (in Chinese) [范康年 2001谱学导论 (北京: 高等教育出版社) 第95页]

  • [1]

    Xu Y M, Dai X H, Sun Y, Lin D S 2008 J. Irriga. Drain 27 5 (in Chinese) [徐应明, 戴晓华, 孙 扬, 林大松 2008 灌溉排水学报 27 5]

    [2]

    Li Q, Minami M, Inagaki H 1998 Toxicology 127 223

    [3]

    Travlos G S, Mahler J, Ragan H A 1996 Fundament. Appl. Toxicol. 30 75

    [4]

    Xu X B, Dai S J, Huang Y Y 1998 Typical Changes and Ecological Effects of Chemical Contaminants in the Environment (Beijing: Science Press) pp88-115 (in Chinese) [徐晓白, 戴树桂, 黄玉瑶 1998典型化学污染物在环境中的变化及生态效应 (北京: 科学出版社) 第88–115页]

    [5]

    An T C, Zhang M L, Zhu X H, Xiong Y, Fu J M, Sheng G Y 2003 China Water & Wastewater 19(9) 25 (in Chinese) [安太成, 张茂林, 朱锡海, 熊亚, 傅家谟, 盛国英 2003中国给水排水 19(9) 25]

    [6]

    Wang S H, Ding G D, Hou H Q 2002 Techniq. Equipment Environ. Pollut. Control 3 14 (in Chinese) [王淑惠, 丁根娣, 侯惠奇 2002环境污染治理技术与设备 3 14]

    [7]

    Xu G L, Lü W J, Liu Y F, Zhu Z L, Zhang X Z, Sun J F 2009 Acta Phys. Sin. 58 3058 (in Chinese) [徐国亮, 吕文静, 刘玉芳, 朱遵略, 张现周, 孙金峰 2009 物理学报 58 3058]

    [8]

    Grozema F C, Telesca R, Joukman H T 2001Chem. Phys. 115 10014

    [9]

    Kjeellberg P, Zhi H, Tonu P J 2003 Phys. Chem. B 107 13737

    [10]

    Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Atom. Mol. Phys. 20 169 (in Chinese) [朱正和, 傅依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子物理学报 20 169]

    [11]

    Chen X J, Luo S Z, Jiang S B, Huang W, Gao X L, Ma M Z, Zhu Z H 2004 Chin. J. Atom. Mol. Phys. 21 203

    [12]

    Frisch M J, Trucks G W, Schegel H B 2003 Gaussian 03, Re-vision B 03, Pittsburgh P A: Gaussian, Inc.

    [13]

    Cai S H, Zhou Y H, He J Y 2011 Acta Phys. Sin. 60 093102 (in Chinese) [蔡绍洪, 周业宏, 何建勇 2011 物理学报 60 093102]

    [14]

    Ruan W, Luo W L, Zhang L, Zhu Z H 2008 Acta Phys. Sin. 57 6207 (in Chinese) [阮文, 罗文浪, 张莉, 朱正和 2008 物理学报 57 6207]

    [15]

    Fan K N 2001 Spectrum Guide (Beijing: Higher Education Press) p95 (in Chinese) [范康年 2001谱学导论 (北京: 高等教育出版社) 第95页]

  • [1] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] 赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳. 几种典型含能材料光激发解离的含时密度泛函理论研究. 物理学报, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [3] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [4] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究. 物理学报, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [5] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响. 物理学报, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [6] 蒋元祺, 彭平. 稳态Cu-Zr二十面体团簇电子结构的密度泛函研究. 物理学报, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [7] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性. 物理学报, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [8] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究. 物理学报, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [9] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO. 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [10] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [11] 张岩, 陈雪风, 齐凯天, 李兵, 杨传路, 盛勇. (SiO2)n-(n≤7)团簇的密度泛函研究. 物理学报, 2010, 59(7): 4598-4601. doi: 10.7498/aps.59.4598
    [12] 唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕. 富勒烯衍生物C60(CF3)n(n=2,4,6,10)几何结构和电子性质变化规律的密度泛函研究. 物理学报, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [13] 杨剑, 王倪颖, 朱冬玖, 陈宣, 邓开明, 肖传云. MPb10(M=Ti,V,Cr,Cu,Pd)几何结构和磁性的密度泛函计算研究. 物理学报, 2009, 58(5): 3112-3117. doi: 10.7498/aps.58.3112
    [14] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究. 物理学报, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [15] 齐凯天, 杨传路, 李兵, 张岩, 盛勇. TinLa(n=1—7)的密度泛函研究. 物理学报, 2009, 58(10): 6956-6961. doi: 10.7498/aps.58.6956
    [16] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构. 物理学报, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [17] 蒋岩玲, 付石友, 邓开明, 唐春梅, 谭伟石, 黄德财, 刘玉真, 吴海平. C60富勒烯-巴比妥酸及其二聚体几何结构和电子结构的密度泛函计算研究. 物理学报, 2008, 57(6): 3690-3697. doi: 10.7498/aps.57.3690
    [18] 矫玉秋, 赵 昆, 卢贵武. H3PAuPh与(H3PAu)2(1,4-C6H4)2光谱性质的密度泛函研究. 物理学报, 2008, 57(3): 1592-1598. doi: 10.7498/aps.57.1592
    [19] 盛 勇, 毛华平, 涂铭旌. TinMg (n=1—10)掺杂团簇的密度泛函研究. 物理学报, 2008, 57(7): 4153-4158. doi: 10.7498/aps.57.4153
    [20] 童宏勇, 顾 牡, 汤学峰, 梁 玲, 姚明珍. PbWO4电子结构的密度泛函计算. 物理学报, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
计量
  • 文章访问数:  5234
  • PDF下载量:  756
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-05
  • 修回日期:  2013-01-10
  • 刊出日期:  2013-05-05

/

返回文章
返回