搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究

孙建平 周科良 梁晓东

引用本文:
Citation:

B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究

孙建平, 周科良, 梁晓东

Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes

Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong
PDF
导出引用
  • 基于第一性原理的密度泛函理论研究了B, P单掺杂以及B, P共掺杂石墨烯对O, O2, OH和OOH的吸附特性. 通过分析吸附能、键长、 态密度以及电荷转移, 比较了不同掺杂对燃料电池氧还原反应(ORR)中间物吸附的影响, 进而探讨了反应过程, 并给出各步反应自由能的变化趋势. 结果表明: B, P单掺杂石墨烯对各中间物的吸附能存在线性关系, 掺P石墨烯吸附OOH的吸附能为3.26 eV, 远大于掺B石墨烯的吸附能0.73 eV; 掺P石墨烯较大的吸附能有利于中间物OOH中OO键的断裂, 掺B石墨烯吸附能小有利于中间物OH生成H2O脱附的反应发生; 而B, P 共掺杂石墨烯的吸附存在协同效应, 具有更好的催化ORR的反应能力.
    Over past years, the excessive use of fossil fuel has posed serious problems such as greenhouse effect and environmental pollution, which threaten human life. Regarded as an ideal substitution for traditional internal combustion engine, low temperature proton exchange membrane fuel cell (PEMFC) converts chemical energy through electrode reaction directly into electrical energy with high efficiency and low pollution. However, the main problem behind the industrialization of PEMFC, is that oxygen reduction reaction (ORR) occurring on the cathode needs precious metal platinum (Pt) as catalyst, which has a limited reserve and is costly. Owing to high activity and stability, the graphenes doped with non-metal B and P, have proven to be excellent alternatives to Pt experimentally. However, the relevant theoretical work is scarce.Adsorptions of the ORR intermediates, i.e., O, O2, OH, and OOH, of doped graphenes are essential for the cathode reaction, which also bring some difficulties to the next step reaction. Therefore, in this paper, based on density functional theory, the adsorption characteristics of O, O2, OH, and OOH of B-doped, P-doped and B, P-codoped graphenes are studied using first-principles calculation code VASP first. By analyzing the adsorption energies, bond lengths, densities of states and charge transfers, the influences of the different dopants on the intermediates are evaluated. Then, the ORR steps are discussed, and the free energy change of each step is further given. The results show that for B-doped and P-doped graphenes, the adsorption energies of various intermediates exhibit similar linear relationships. The adsorption energy of OOH of P-doped graphene (3.26 eV) is much larger than that in B-doped grapheme (0.73 eV). The large adsorption energy of P-doped graphene is beneficial to the fracture reaction of OO bond in OOH, while the small adsorption energy of B-doped graphene can promote the reaction of OH converting into water. Owing to the synergistic effect, the graphene codoped with B and P possesses better catalyzing ability than single B-and P-doped ones. The results are helpful for understanding the excellent performances of codoped graphenes.
      通信作者: 孙建平, sunjp@ncepu.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: 12MS26)和国家自然科学基金(批准号: 61372050)资助的课题.
      Corresponding author: Sun Jian-Ping, sunjp@ncepu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 12MS26) and the National Natural Science Foundation of China (Grant No. 61372050).
    [1]

    Shao A F, Wang Z B, Chu Y Y, Jiang Z Z, Yin G P, Liu Y 2010 Fuel Cells 10 472

    [2]

    Nagashree K L, Raviraj N H, Ahmed M F 2010 Electrochim. Acta 55 2629

    [3]

    Gasteiger H A, Markovic N M 2009 Science 324 48

    [4]

    Gong K P, Du F, Xia Z H, Durstock M, Dai L M 2009 Science 323 760

    [5]

    Liu X, Li L, Meng C G, Han Y 2012 J. Phys. Chem. C 116 2710

    [6]

    Neergat M, Shukla A K, Gandhi K S 2001 J. Appl. Electrochem. 31 373

    [7]

    Yu X W, Ye S Y 2007 J. Power Sources 172 145

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [10]

    Lee C G, Wei X D, Kysar J W, Home J 2008 Science 321 385

    [11]

    Sun J P, Miao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301 (in Chinese) [孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301]

    [12]

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese) [黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 物理学报 64 038103]

    [13]

    Yang X X, Kong X T, Dai Q 2015 Acta Phys. Sin. 64 106801 (in Chinese) [杨晓霞, 孔祥天, 戴庆 2015 物理学报 64 106801]

    [14]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701

    [15]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [16]

    Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W, Hu Z 2011 Angew. Chem. Int. Ed. 50 7132

    [17]

    Qu L T, Liu Y, Baek J B, Dai L M 2010 ACS Nano 4 1321

    [18]

    Ma G X, Zhao J H, Zheng J F, Zhu Z P 2012 New Carbon Mater. 27 258

    [19]

    Yang Z, Yao Z, Li G F, Fang G Y, Nie H G, Liu Z, Zhou X M, Chen X A, Huang S M 2012 ACS Nano 6 205

    [20]

    Tang L H, Wang Y, Li Y M, Feng H B, Lu J, Li J H 2009 Adv. Funct. Mater. 19 2782

    [21]

    Sun X J, Zhang Y W, Song P, Pan J, Zhuang L, Xu W L, Xing W 2013 ACS Catal. 3 1726

    [22]

    Yao Z, Nie H G, Yang Z, Zhou X M, Liu Z, Huang S M 2012 Chem. Commun. 48 1027

    [23]

    Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 J. Mater. Chem. 22 390

    [24]

    Chen Y H, Tian Y Y, Fang X Z, Liu J G, Yan C W 2014 Electrochim. Acta 143 291

    [25]

    Li R, Wei Z D, Gou X L, Xu W 2013 RSC Adv. 3 9978

    [26]

    Zhang C Z, Mahmood N, Yin H, Liu F, Hou Y L 2013 Adv. Mater. 25 4932

    [27]

    Ozaki J I, Kimura N, Anahara T, Oya A 2007 Carbon 45 1847

    [28]

    Zhu J L, He C Y, Li Y Y, Kang S A, Shen P K 2013 J. Mater. Chem. A 1 14700

    [29]

    Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao S Z 2013 Angew. Chem. Int. Ed. 52 3110

    [30]

    Choi C H, Park S H, Woo S I 2012 J. Mater. Chem. 22 12107

    [31]

    Duan X G, Indrawirawan S, Sun H Q, Wang S B 2015 Catal. Today 249 184

    [32]

    Kong X K, Chen Q W, Sun Z Y 2013 Chem. Phys. Chem. 14 514

    [33]

    Zhang X L, Lu Z S, Fu Z M, Tang Y N, Ma D W, Yang Z X 2015 J. Power Sources 276 222

    [34]

    Fan X F, Zheng W T, Kuo J L 2013 RSC Adv. 3 5498

    [35]

    Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L 2004 J. Phys. Chem. B 108 17886

    [36]

    Li M T, Zhang L P, Xu Q, Niu J B, Xia Z H 2014 J. Catal. 314 66

    [37]

    Lim D H, Wilcox J 2012 J. Phys. Chem. C 116 3653

    [38]

    Atkins P W 1998 Physical Chemistry (6th Ed.) (Oxford: Oxford University Press) pp485, 925-927, 942

    [39]

    Zhang H Q, Liang Y M, Zhou J X 2014 Acta Chim. Sin. 72 367

  • [1]

    Shao A F, Wang Z B, Chu Y Y, Jiang Z Z, Yin G P, Liu Y 2010 Fuel Cells 10 472

    [2]

    Nagashree K L, Raviraj N H, Ahmed M F 2010 Electrochim. Acta 55 2629

    [3]

    Gasteiger H A, Markovic N M 2009 Science 324 48

    [4]

    Gong K P, Du F, Xia Z H, Durstock M, Dai L M 2009 Science 323 760

    [5]

    Liu X, Li L, Meng C G, Han Y 2012 J. Phys. Chem. C 116 2710

    [6]

    Neergat M, Shukla A K, Gandhi K S 2001 J. Appl. Electrochem. 31 373

    [7]

    Yu X W, Ye S Y 2007 J. Power Sources 172 145

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [10]

    Lee C G, Wei X D, Kysar J W, Home J 2008 Science 321 385

    [11]

    Sun J P, Miao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301 (in Chinese) [孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301]

    [12]

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese) [黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 物理学报 64 038103]

    [13]

    Yang X X, Kong X T, Dai Q 2015 Acta Phys. Sin. 64 106801 (in Chinese) [杨晓霞, 孔祥天, 戴庆 2015 物理学报 64 106801]

    [14]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701

    [15]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [16]

    Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W, Hu Z 2011 Angew. Chem. Int. Ed. 50 7132

    [17]

    Qu L T, Liu Y, Baek J B, Dai L M 2010 ACS Nano 4 1321

    [18]

    Ma G X, Zhao J H, Zheng J F, Zhu Z P 2012 New Carbon Mater. 27 258

    [19]

    Yang Z, Yao Z, Li G F, Fang G Y, Nie H G, Liu Z, Zhou X M, Chen X A, Huang S M 2012 ACS Nano 6 205

    [20]

    Tang L H, Wang Y, Li Y M, Feng H B, Lu J, Li J H 2009 Adv. Funct. Mater. 19 2782

    [21]

    Sun X J, Zhang Y W, Song P, Pan J, Zhuang L, Xu W L, Xing W 2013 ACS Catal. 3 1726

    [22]

    Yao Z, Nie H G, Yang Z, Zhou X M, Liu Z, Huang S M 2012 Chem. Commun. 48 1027

    [23]

    Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 J. Mater. Chem. 22 390

    [24]

    Chen Y H, Tian Y Y, Fang X Z, Liu J G, Yan C W 2014 Electrochim. Acta 143 291

    [25]

    Li R, Wei Z D, Gou X L, Xu W 2013 RSC Adv. 3 9978

    [26]

    Zhang C Z, Mahmood N, Yin H, Liu F, Hou Y L 2013 Adv. Mater. 25 4932

    [27]

    Ozaki J I, Kimura N, Anahara T, Oya A 2007 Carbon 45 1847

    [28]

    Zhu J L, He C Y, Li Y Y, Kang S A, Shen P K 2013 J. Mater. Chem. A 1 14700

    [29]

    Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao S Z 2013 Angew. Chem. Int. Ed. 52 3110

    [30]

    Choi C H, Park S H, Woo S I 2012 J. Mater. Chem. 22 12107

    [31]

    Duan X G, Indrawirawan S, Sun H Q, Wang S B 2015 Catal. Today 249 184

    [32]

    Kong X K, Chen Q W, Sun Z Y 2013 Chem. Phys. Chem. 14 514

    [33]

    Zhang X L, Lu Z S, Fu Z M, Tang Y N, Ma D W, Yang Z X 2015 J. Power Sources 276 222

    [34]

    Fan X F, Zheng W T, Kuo J L 2013 RSC Adv. 3 5498

    [35]

    Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L 2004 J. Phys. Chem. B 108 17886

    [36]

    Li M T, Zhang L P, Xu Q, Niu J B, Xia Z H 2014 J. Catal. 314 66

    [37]

    Lim D H, Wilcox J 2012 J. Phys. Chem. C 116 3653

    [38]

    Atkins P W 1998 Physical Chemistry (6th Ed.) (Oxford: Oxford University Press) pp485, 925-927, 942

    [39]

    Zhang H Q, Liang Y M, Zhou J X 2014 Acta Chim. Sin. 72 367

  • [1] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [3] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [4] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [5] 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 氧化石墨烯基功能纸的简易制备和染料吸附性能. 物理学报, 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [6] 贺艳斌, 贾建峰, 武海顺. N2H4在NiFe(111)合金表面吸附稳定性和电子结构的第一性原理研究. 物理学报, 2015, 64(20): 203101. doi: 10.7498/aps.64.203101
    [7] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [8] 李峰, 肖传云, 阚二军, 陆瑞锋, 邓开明. 钯和铂金属在石墨烯表面不同生长机理第一性原理研究. 物理学报, 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [9] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO . 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [10] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [11] 张建军, 张红. Al吸附在Pt, Ir和Au的(111)面的低覆盖度研究. 物理学报, 2010, 59(6): 4143-4149. doi: 10.7498/aps.59.4143
    [12] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究. 物理学报, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [13] 杨剑, 王倪颖, 朱冬玖, 陈宣, 邓开明, 肖传云. MPb10(M=Ti,V,Cr,Cu,Pd)几何结构和磁性的密度泛函计算研究. 物理学报, 2009, 58(5): 3112-3117. doi: 10.7498/aps.58.3112
    [14] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [15] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究. 物理学报, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [16] 唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕. 富勒烯衍生物C60(CF3)n(n=2,4,6,10)几何结构和电子性质变化规律的密度泛函研究. 物理学报, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [17] 魏彦薇, 杨宗献. Au在Zr掺杂的CeO2(110)面吸附的第一性原理研究. 物理学报, 2008, 57(11): 7139-7144. doi: 10.7498/aps.57.7139
    [18] 盛 勇, 毛华平, 涂铭旌. TinMg (n=1—10)掺杂团簇的密度泛函研究. 物理学报, 2008, 57(7): 4153-4158. doi: 10.7498/aps.57.4153
    [19] 蒋岩玲, 付石友, 邓开明, 唐春梅, 谭伟石, 黄德财, 刘玉真, 吴海平. C60富勒烯-巴比妥酸及其二聚体几何结构和电子结构的密度泛函计算研究. 物理学报, 2008, 57(6): 3690-3697. doi: 10.7498/aps.57.3690
    [20] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构. 物理学报, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
计量
  • 文章访问数:  3546
  • PDF下载量:  678
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-30
  • 修回日期:  2015-07-22
  • 刊出日期:  2016-01-05

B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究

  • 1. 华北电力大学电气与电子工程学院, 北京 102206
  • 通信作者: 孙建平, sunjp@ncepu.edu.cn
    基金项目: 中央高校基本科研业务费专项资金(批准号: 12MS26)和国家自然科学基金(批准号: 61372050)资助的课题.

摘要: 基于第一性原理的密度泛函理论研究了B, P单掺杂以及B, P共掺杂石墨烯对O, O2, OH和OOH的吸附特性. 通过分析吸附能、键长、 态密度以及电荷转移, 比较了不同掺杂对燃料电池氧还原反应(ORR)中间物吸附的影响, 进而探讨了反应过程, 并给出各步反应自由能的变化趋势. 结果表明: B, P单掺杂石墨烯对各中间物的吸附能存在线性关系, 掺P石墨烯吸附OOH的吸附能为3.26 eV, 远大于掺B石墨烯的吸附能0.73 eV; 掺P石墨烯较大的吸附能有利于中间物OOH中OO键的断裂, 掺B石墨烯吸附能小有利于中间物OH生成H2O脱附的反应发生; 而B, P 共掺杂石墨烯的吸附存在协同效应, 具有更好的催化ORR的反应能力.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回