搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯基功能纸的简易制备和染料吸附性能

曹海燕 毕恒昌 谢骁 苏适 孙立涛

引用本文:
Citation:

氧化石墨烯基功能纸的简易制备和染料吸附性能

曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛

Functional tissues based on graphene oxide: facile preparation and dye adsorption properties

Cao Hai-Yan, Bi Heng-Chang, Xie Xiao, Su Shi, Sun Li-Tao
PDF
导出引用
  • 染料污染是水体污染的一个重要方面, 吸附法因具有效率高, 简单易操作等优点, 被认为优于其他的染料废水处理技术. 本文采用一种简单的方法制备了具有高吸附、易分离特性的氧化石墨烯基功能纸, 研究其对水中阳离子染料的吸附, 考察了吸附时间、染料初始浓度、吸附剂用量及温度对吸附性能的影响. 利用扫描电子显微镜、拉曼光谱分析、热重分析、紫外可见吸收光谱仪等测试方法, 对氧化石墨烯基功能纸的结构、形貌和吸附性能进行表征分析. 结果表明: 氧化石墨烯基功能纸对阳离子染料亚甲基蓝和罗丹明B有良好的吸附效果, 当亚甲基蓝和罗丹明B的初始浓度分别为40和30 mgL-1, 功能纸对两种染料的吸附量分别达到了54.84 和21.74 mgg-1. 而且这种氧化石墨烯基吸附材料很好地解决了吸附剂与水体的分离问题. 另外, 实验还发现, 在氧化石墨烯基功能纸吸附染料的过程中, 氧化石墨烯对染料的吸附作用远远大于纸巾本身对染料的吸附. 例如, 对于罗丹明B, 纸巾的吸附量几乎为零, 当罗丹明B 的初始浓度为30 mgL-1时, 以纸巾上负载的氧化石墨烯质量计算的吸附量达到了183 mgg-1. 动力学研究结果表明吸附过程较好地符合伪二级动力学模型, 热力学数据分析, 氧化石墨烯基功能纸对两种染料的吸附行为是自发吸热的. 研究结果对基于氧化石墨烯的吸附材料的制备和应用提供了参考依据.
    Dye pollution, one of the most serious pollutions in water, remains a challenging issue in environmental engineering. Many strategies including membrane separation, chemical oxidation, electrolysis, adsorption, etc., have been adopted to remove the dyes from water. Compared with other methods, adsorption has its own unique advantages such as low cost, low energy consumption and high efficiency. However, commercial adsorbents have low adsorption capacities and separation of absorbents/water, which hinders their practical applications. In this paper, functional tissues based on graphene oxide are fabricated through a simple immersion method. The structure, morphology and adsorption ability for each of these functional tissues are characterized and analyzed by scanning electron microscopy, Raman spectroscopy, thermal gravity analysis and UV-Vis spectrophotometer. The combination of commercial tissue and graphene oxide can solve the aforementioned problems such as low adsorption capacity, hard separation of adsorbent from water. on the one hand, abundant oxygen-containing functional groups and defects existing in graphene oxide sheets can be used as active adsorption sites, which endows the functional tissue with high adsorption capacity; On the other hand, the crosslinking of commercial tissue and graphene oxide through hydrogen bonding enables the functional tissue to be completely recycled from water after adsorption, which can avoid the secondary pollution caused by adsorbents such as pure graphene oxide. Batch tests are conducted to investigate the adsorption performance, e.g. the influences of adsorption time, initial concentration of dyes, adsorbent amount, and temperature on the adsorption performance. The results suggest that functional tissue has excellent performance for the removal of methylene blue and rhodamine B. Giving that the initial concentrations of methylene blue and rhodamine B are 40 mgL-1 and 30 mgL-1 respectively, the adsorption capacities are 54.84 mgg-1 and 21.74 mgg-1, respectively. It is noteworthy that graphene oxide sheets play a critical role in adsorbing the dyes. The adsorption capacity of functional tissue based on graphene oxide for rhodamine B totally results from graphene oxide component. Calculating the graphene oxide loading on the tissue, the adsorption capacity for rhodamine B reaches 183 mgg-1 at initial concentration of 30 mgL-1. Meanwhile, the adsorbance quantities of the functional tissue for the two dyes increase with adsorption time, initial concentration, adsorbent dosage, and temperature. Kinetic analysis reveals that the adsorption processes for methylene blue and rhodamine B are well-matched with the pseudo-second-order kinetic model, indicating the dominance of chemical adsorption in the whole adsorption process. The thermodynamic parameters indicate that the adsorption is spontaneous and endothermic in nature. In summary, a facile, inexpensive, and eco-friendly synthesis method is developed to fabricate the functional tissues based on graphene oxide. The functional tissues have high adsorption capacities for dyes. The combination of commercial tissue and graphene oxide could be explored as a new adsorbent for removing toxic organic dye pollutants from aqueous environment.
      通信作者: 孙立涛, slt@seu.edu.cn
    • 基金项目: 国家杰出青年科学基金(批准号:11525415)、国家自然科学基金国际(地区)合作与交流项目(批准号:51420105003)、国家重大科研仪器设备研制专项(批准号:11327901)和国家自然科学基金(批准号:51302037)资助的课题.
      Corresponding author: Sun Li-Tao, slt@seu.edu.cn
    • Funds: Project supported by the National Science Fund for Distinguished Young iScholars of China (Grant No. 11525415), the International (Regional) Cooperation and Exchange Program of the National Natural Science Foundation of China (Grant No. 51420105003), the Special Found for Research on National Major Research Instrument and Facilities of the National Natural Science Foundation of China (Grant No. 11327901), and the National Natural Science Foundation of China (Grant No. 51302037).
    [1]

    Gupta V K, Mohan D, Sharma S, Sharma M 2000 Sep. Sci. Technol. 35 2097

    [2]

    Shi H C, Li W S, Zhong L, Xu C J 2014 Ind. Eng. Chem. Res. 53 1108

    [3]

    Chakraborty S, Purkait M K, Dasgupta S, De S, Basu J K 2003 Sep. Purif. Technol. 31 141

    [4]

    Yu S C, Liu M H, Ma M, Qi M, L Z H, Gao C J 2010 J. Membr. Sci. 350 83

    [5]

    Kim T H, Park C, Yang J, Kim S 2004 J. Hazard. Mater. 112 95

    [6]

    Sekaran G, Karthikeyan S, Boopathy R, Maharaja P, Gupta V K, Anandan C 2014 Environ. Sci. Pollut. Res. 21 1489

    [7]

    Parsa J B, Merati Z, Abbasi M 2013 J. Ind. Eng. Chem. 19 1350

    [8]

    Mohammed F M, Roberts E P L, Hill A, Campen A K, Brown N W 2011 Water Res. 45 3065

    [9]

    Ju D G, Byun I G, Park J J, Lee C H, Ahn G H, Park T J 2008 Bioresour. Technol. 99 7971

    [10]

    Namvari M, Namazi H 2014 Polym. Int. 63 1881

    [11]

    Huang Y H, Xu T F, Yang L Y 2013 Water Treatment Technology (1st Ed.) (Zhengzhou: The Yellow River Water Conservancy Press) pp243-254 (in Chinese) [黄跃华, 许铁夫, 杨丽英 2013 水处理技术(第一版)(郑州: 黄河水利出版社) 第243-254页]

    [12]

    Shen Z, Zhu Z Y, Zhang M C 2015 Environ. Sci. Technol. 28 68 (in Chinese) [沈众, 朱增银, 张满成 2015 环境科技 28 68]

    [13]

    Gao L, Wang Y G, Yan T, Cui L M, Hu L H, Yan L G, Wei Q, Du B 2015 New J.Chem. 39 2908

    [14]

    Shen Y, Fang Q, Chen B L 2015 Environ. Sci. Technol. 49 67

    [15]

    Bi H C, Xie X, Yin K B, Zhou Y L, Wan S, He L B, Xu F, Banhart F, Sun L T, Ruoff R S 2012 Adv. Funct. Mater. 22 4421

    [16]

    Zhou P P 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [周盼盼 2010 博士学位论文 (兰州: 兰州大学)]

    [17]

    Peng Z 2013 M. S. Thesis (Kaifeng: Henan University) (in Chinese) [彭展2013 硕士学位论文 (开封: 河南大学)]

    [18]

    Vinothkannan M, Karthikeyan C, Kumar G G, Kim A R, Yoo D J 2015 Spectrochim. Acta A 136 256

    [19]

    Jung C Y, Yao W, Park J M, Hyun I H, Seong D H, Jaung J Y 2015 Tetrahedron Lett. 56 6915

    [20]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [21]

    Achaby M E, Miri N E, Snik A, Zahouily M, Abdelouahdi K, Fihri A, Barakat A, Solhy A 2016 J. Appl. Polym. Sci. 133 42356

    [22]

    Zhu H W, Xu Z P, Xie D 2011 Graphene: Structure, Synthetic Methods, Characterization (1st Ed.) (Beijing: Tsinghua University Press ) pp25-28 (in Chinese) [朱宏伟, 徐志平, 谢丹 2011石墨烯: 结构、制备方法与性能表征(第一版)(北京: 清华大学出版社) 第25-28页]

    [23]

    Gao W, Majumder M, Alemany L B, Narayanan T N, Ibarra M A, Pradhan B K, Ajayan P M 2011 ACS Appl. Mater. Interfaces 3 1821

    [24]

    Wu J X, Xu H, Zhang J 2014 Acta Chim. Sinica 72 301 (in Chinese) [吴娟霞, 徐华, 张锦 2014 化学学报 72 301]

    [25]

    Shi H C 2014 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [师浩淳 2014 博士学位论文 (天津: 天津大学)]

    [26]

    Ai L H, Jiang J 2012 Chem. Eng. J. 192 156

    [27]

    Tang L, Cai Y, Yang G D, Liu Y Y, Zeng G M, Zhou Y Y, Li S S, Wang J J, Zhang S, Fang Y, He Y B 2014 Appl. Surf. Sci. 314 746

    [28]

    Liu F, Chung S, Oh G, Seo T S 2012 ACS Appl. Mater. Interfaces 4 922

    [29]

    Aksu Z 2001 Biochem. Eng. J. 7 79

    [30]

    Ho Y S, Mckay G 1999 Process Biochem. 34 451

    [31]

    Ding S M, Feng X H, Wang Y T, Peng Q 2005 J. Anal. Sci. 21 127 (in Chinese) [丁世敏, 封享华, 汪玉庭, 彭祺 2005 分析科学学报 21 127]

  • [1]

    Gupta V K, Mohan D, Sharma S, Sharma M 2000 Sep. Sci. Technol. 35 2097

    [2]

    Shi H C, Li W S, Zhong L, Xu C J 2014 Ind. Eng. Chem. Res. 53 1108

    [3]

    Chakraborty S, Purkait M K, Dasgupta S, De S, Basu J K 2003 Sep. Purif. Technol. 31 141

    [4]

    Yu S C, Liu M H, Ma M, Qi M, L Z H, Gao C J 2010 J. Membr. Sci. 350 83

    [5]

    Kim T H, Park C, Yang J, Kim S 2004 J. Hazard. Mater. 112 95

    [6]

    Sekaran G, Karthikeyan S, Boopathy R, Maharaja P, Gupta V K, Anandan C 2014 Environ. Sci. Pollut. Res. 21 1489

    [7]

    Parsa J B, Merati Z, Abbasi M 2013 J. Ind. Eng. Chem. 19 1350

    [8]

    Mohammed F M, Roberts E P L, Hill A, Campen A K, Brown N W 2011 Water Res. 45 3065

    [9]

    Ju D G, Byun I G, Park J J, Lee C H, Ahn G H, Park T J 2008 Bioresour. Technol. 99 7971

    [10]

    Namvari M, Namazi H 2014 Polym. Int. 63 1881

    [11]

    Huang Y H, Xu T F, Yang L Y 2013 Water Treatment Technology (1st Ed.) (Zhengzhou: The Yellow River Water Conservancy Press) pp243-254 (in Chinese) [黄跃华, 许铁夫, 杨丽英 2013 水处理技术(第一版)(郑州: 黄河水利出版社) 第243-254页]

    [12]

    Shen Z, Zhu Z Y, Zhang M C 2015 Environ. Sci. Technol. 28 68 (in Chinese) [沈众, 朱增银, 张满成 2015 环境科技 28 68]

    [13]

    Gao L, Wang Y G, Yan T, Cui L M, Hu L H, Yan L G, Wei Q, Du B 2015 New J.Chem. 39 2908

    [14]

    Shen Y, Fang Q, Chen B L 2015 Environ. Sci. Technol. 49 67

    [15]

    Bi H C, Xie X, Yin K B, Zhou Y L, Wan S, He L B, Xu F, Banhart F, Sun L T, Ruoff R S 2012 Adv. Funct. Mater. 22 4421

    [16]

    Zhou P P 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [周盼盼 2010 博士学位论文 (兰州: 兰州大学)]

    [17]

    Peng Z 2013 M. S. Thesis (Kaifeng: Henan University) (in Chinese) [彭展2013 硕士学位论文 (开封: 河南大学)]

    [18]

    Vinothkannan M, Karthikeyan C, Kumar G G, Kim A R, Yoo D J 2015 Spectrochim. Acta A 136 256

    [19]

    Jung C Y, Yao W, Park J M, Hyun I H, Seong D H, Jaung J Y 2015 Tetrahedron Lett. 56 6915

    [20]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [21]

    Achaby M E, Miri N E, Snik A, Zahouily M, Abdelouahdi K, Fihri A, Barakat A, Solhy A 2016 J. Appl. Polym. Sci. 133 42356

    [22]

    Zhu H W, Xu Z P, Xie D 2011 Graphene: Structure, Synthetic Methods, Characterization (1st Ed.) (Beijing: Tsinghua University Press ) pp25-28 (in Chinese) [朱宏伟, 徐志平, 谢丹 2011石墨烯: 结构、制备方法与性能表征(第一版)(北京: 清华大学出版社) 第25-28页]

    [23]

    Gao W, Majumder M, Alemany L B, Narayanan T N, Ibarra M A, Pradhan B K, Ajayan P M 2011 ACS Appl. Mater. Interfaces 3 1821

    [24]

    Wu J X, Xu H, Zhang J 2014 Acta Chim. Sinica 72 301 (in Chinese) [吴娟霞, 徐华, 张锦 2014 化学学报 72 301]

    [25]

    Shi H C 2014 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [师浩淳 2014 博士学位论文 (天津: 天津大学)]

    [26]

    Ai L H, Jiang J 2012 Chem. Eng. J. 192 156

    [27]

    Tang L, Cai Y, Yang G D, Liu Y Y, Zeng G M, Zhou Y Y, Li S S, Wang J J, Zhang S, Fang Y, He Y B 2014 Appl. Surf. Sci. 314 746

    [28]

    Liu F, Chung S, Oh G, Seo T S 2012 ACS Appl. Mater. Interfaces 4 922

    [29]

    Aksu Z 2001 Biochem. Eng. J. 7 79

    [30]

    Ho Y S, Mckay G 1999 Process Biochem. 34 451

    [31]

    Ding S M, Feng X H, Wang Y T, Peng Q 2005 J. Anal. Sci. 21 127 (in Chinese) [丁世敏, 封享华, 汪玉庭, 彭祺 2005 分析科学学报 21 127]

  • [1] 李醒龙, 赵浩宇, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮. 氧化石墨烯修饰倾斜光纤光栅10–12级重金属离子传感. 物理学报, 2022, 71(5): 050702. doi: 10.7498/aps.71.20211315
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [3] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [4] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究. 物理学报, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [5] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究. 物理学报, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [6] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华. 基于温度的亚稳态氧化石墨烯性能. 物理学报, 2019, 68(15): 156501. doi: 10.7498/aps.68.20190670
    [7] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器. 物理学报, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [8] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 物理学报, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [9] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响. 物理学报, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [10] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究. 物理学报, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [11] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [12] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [13] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光. 氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究. 物理学报, 2014, 63(8): 084202. doi: 10.7498/aps.63.084202
    [14] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [15] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO. 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [16] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究. 物理学报, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [17] 陈 钢, 庄德文, 张 航, 徐 军, 程 成. 差分法求解时空分布的激光动力学模型. 物理学报, 2008, 57(8): 4953-4959. doi: 10.7498/aps.57.4953
    [18] 肖中银, 王廷云, 罗文芸, 王子华. 高能粒子辐照二氧化硅玻璃E′色心形成机理研究. 物理学报, 2008, 57(4): 2273-2277. doi: 10.7498/aps.57.2273
    [19] 陈 立, 毛邦宁, 王煜博, 王丽敏, 潘佰良. Sr离子自终止和复合激光交替振荡的动力学模型. 物理学报, 2007, 56(12): 6976-6981. doi: 10.7498/aps.56.6976
    [20] 樊康旗, 贾建援, 朱应敏, 刘小院. 原子力显微镜在轻敲模式下的动力学模型. 物理学报, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
计量
  • 文章访问数:  5915
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-16
  • 修回日期:  2016-05-06
  • 刊出日期:  2016-07-05

/

返回文章
返回