搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

还原温度对氧化石墨烯结构及室温下H2敏感性能的影响

陈浩 彭同江 刘波 孙红娟 雷德会

引用本文:
Citation:

还原温度对氧化石墨烯结构及室温下H2敏感性能的影响

陈浩, 彭同江, 刘波, 孙红娟, 雷德会

Effect of reduction temperature on structure and hydrogen sensitivity of graphene oxides at room temperature

Chen Hao, Peng Tong-Jiang, Liu Bo, Sun Hong-Juan, Lei De-Hui
PDF
导出引用
  • 以氧化石墨凝胶制备的氧化石墨烯(GO)溶胶为前驱体,在100-350 ℃温度下还原获得不同还原程度的还原氧化石墨烯(rGO)样品,并采用旋涂工艺制备还原氧化石墨烯气敏薄膜元件. 采用X射线衍射、拉曼光谱、傅里叶变换红外光谱和气敏测试等手段研究还原温度对样品结构、官能团和气敏性能的影响. 结果表明:经热还原处理的氧化石墨烯结构向较为有序的类石墨结构转变,还原温度为200 ℃时,样品处于GO向rGO转变的过渡阶段,还原温度达到250 ℃时,则表现出还原氧化石墨烯特性;无序程度随还原温度的升高先由0.85增大至1.59,随后减小至1.41,总体呈现增加趋势;氧化石墨烯表面含氧官能团随还原温度的升高逐渐热解失去,不同含氧官能团的失去温度范围不同;热还原氧化石墨烯具有优异的室温H2敏感性能,随着还原温度的升高,元件灵敏度逐渐减小,响应-恢复时间逐渐增大,最佳灵敏度为88.56%,响应时间为30 s.
    As precursors exfoliated from graphite oxide gels, graphene oxide thin films are annealed in a temperature range of 100 ℃ to 350 ℃ to obtain a series of reduced graphene oxide samples with different reduction degrees. For the gas sensing experiments, the reduced graphene oxide thin film gas sensing element is prepared by spin coating with Ag-Pd integrated electronic device (Ag-Pd IED). The functional groups, structures, and gas sensing performance of all the samples are investigated by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, and gas sensing measurement. The results show that the structure of the graphene oxide samples are transformed to the graphitic structure after reduction at different thermal treatment temperatures. When the reduction temperature is lower than 150 ℃, materials exhibit features of graphite oxide. When the reduction temperature reaches about 200 ℃, the samples show characteristics transformed from graphite oxide to reduced graphite oxide gradually. When the temperature is higher than 250 ℃, materials show features of reduced graphite oxide. During the reduction process, the disorder degree increases from 0.85 to 1.59, and then decreases slightly to 1.41 with the rise of temperature. Additionally, the oxygen containing functional groups are removed with the increasing reduction temperature, and these functional groups can be removed at specific temperatures. In the lower temperature stage (100-200 ℃), the first kind of oxygen containing functional group removed is the hydroxyl group (C-OH) and the epoxy group (C-O-C) is the second. In the higher temperature stage (250-350 ℃), the main removed oxygen containing functional groups are the epoxy group (C-O-C) and the carbonyl group (C=O). The materials treated at 150, 200, 350 ℃ exhibit n-type, ambipolar, and p-type behaviors, respectively, while rGO-200 exhibits considerable increase in resistance upon exposure to hydrogen gas. rGO-200 exhibits very small decrease of resistance at room temperature and moderate increase of resistance at elevated temperatures upon exposure to hydrogen gas, while rGO-350 exhibits considerable decrease of resistance at room temperature upon exposure to hydrogen gas. These results indicate that the reduction temperature affects the distribution of density of states (DOS) in the band gap as well as the band gap size. The graphene oxide and the reduced products at low temperature show good sensitivity to hydrogen gas. With the increasing reduction temperature, the sensitivity fades while the response time and recovery time increases. The gas sensor exhibits high sensitivity (88.56%) and short response time (30 s) when exposed to the 10-4 hydrogen gas at room temperature.
      通信作者: 彭同江, tjpeng@swust.edu.cn;sunhongjuan@swust.edu.cn ; 孙红娟, tjpeng@swust.edu.cn;sunhongjuan@swust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1630132,41272051)和西南科技大学研究生创新基金(批准号:15ycx074)资助的课题.
      Corresponding author: Peng Tong-Jiang, tjpeng@swust.edu.cn;sunhongjuan@swust.edu.cn ; Sun Hong-Juan, tjpeng@swust.edu.cn;sunhongjuan@swust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1630132, 41272051) and the Postgraduate Innovation Fund of Southwest University of Science and Technology, China (Grant No. 15ycx074).
    [1]

    Wada K, Egashira M 2000 Sens. Actuators B 62 211

    [2]

    Park S J, Park J, Lee H Y, Moon S E, Park K H, Kim J, Maeng S, Udrea F, Milne W I, Kim G T 2010 J. Nanosci. Nanotechno. 10 3385

    [3]

    Moon S E, Lee H Y, Park J, Lee J W, Choi N J, Park S J, Kwak J H, Park K H, Kim J, Cho G H, Lee T H, Maeng S, Udrea F, Milne W I 2010 J. Nanosci. Nanotechno. 10 3189

    [4]

    Miyazaki H, Hyodo T, Shimizu Y, Egashira M 2005 Sens. Actuators B 108 467

    [5]

    Yu Z, Dang Z, Ke X Z, Cui Z 2016 Acta Phys. Sin. 65 248103 (in Chinese) [禹忠, 党忠, 柯熙政, 崔真 2016 物理学报 65 248103]

    [6]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [7]

    Chung M G, Kim D H, Lee H M, Kim T, Choi J H, Seo D K, Yoo J B, Hong S H, Kang T J, Kim Y H 2012 Sens. Actuators B. 166-167 172

    [8]

    Yasaei P, Kumar B, Hantehzadeh R, Kayyalha M, Baskin A, Repnin N, Wang C, Klie R F, Chen Y P, Krl P, Salehi-Khojin A 2014 Nat. Commun. 5 4911

    [9]

    Venugopal G, Krishnamoorthy K, Mohan R, Kim S J 2012 Mater. Chem. Phys. 132 29

    [10]

    Guo L, Jiang H B, Shao R Q, Zhang Y L, Xie S Y, Wang J N, Li X B, Jiang F, Chen Q D, Zhang T, Sun H B 2012 Carbon. 50 1667

    [11]

    Peng Y, Li J H 2013 Front. Environ. Sci. Eng. 7 403

    [12]

    You R C, Yoon Y G, Choi K S, Kang J H, Shim Y S, Kim Y H, Chang H J, Lee J H, Park C R, Kim S Y, Jang H W 2015 Carbon. 91 178

    [13]

    Chu B H, Lo C F, Nicolosi J, Chang C Y, Chena V, Strupinskic W, Peartonb S J, Rena F 2011 Sens. Actuators B. 157 500

    [14]

    Pandey P A, Wilson N R, Covington J A 2013 Sens. Actuators B. 183 478

    [15]

    Anand K, Singh O, Singh M P, Kaur J, Singh R C 2014 Sens. Actuators B 195 409

    [16]

    Hou R N, Peng T J, Sun H J 2015 J. Funct. Mater. 46 16079 (in Chinese) [侯若男, 彭同江, 孙红娟 2015 功能材料 46 16079]

    [17]

    Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A 2013 Nanoscale 5 5426

    [18]

    Lu G, Ocola L E, Chen J 2009 Nanotechnology 20 19351

    [19]

    Yang Y H, Sun H J, Peng T J, Huang Q 2011 Acta Phys.-Chim. Sin. 27 736 (in Chinese) [杨永辉, 孙红娟, 彭同江, 黄桥 2011 物理化学学报 27 736]

    [20]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [21]

    Wang J D, Peng T J, Sun H J 2014 Acta Phys.-Chim. Sin. 30 2077 (in Chinese) [汪建德, 彭同江, 孙红娟 2014 物理化学学报 30 2077]

    [22]

    Ferrari A C 2007 Solid State Commun. 143 47

    [23]

    Chen J G, Peng T J, Sun H J 2014 J. Inorg. Chem. 30 779 (in Chinese) [陈军刚, 彭同江, 孙红娟 2014 无机化学学报 30 779]

    [24]

    Bi H, Yin K, Xie X, Ji J, Wan S, Sun L T, Terrones M, Dresselhaus M 2013 Sci Rep. 3 2714

    [25]

    Rimeika R, Barkauskas J, Čiplys D 2011 Appl Phys Lett. 99 051915

    [26]

    Shang D, Lin L B, He J 2005 J. Sichuan University 42 523 (in Chinese) [尚东, 林理彬, 何捷 2005 四川大学学报(自然科学版) 42 523]

    [27]

    Hou R N, Peng T J, Sun H J 2014 J. Synthe. Cry. 43 2656 (in Chinese) [侯若男, 彭同江, 孙红娟 2014 人工晶体学报 43 2656]

    [28]

    Wang J, Kwak Y, Lee I Y, Maeng S, Kim G H 2012 Carbon 50 4061

    [29]

    Xu Z, Xue K 2010 Nanotechnology 21 19

    [30]

    Boukhvalov D W, Katsnelson M I 2008 J. Am. Chem. Soc. 130 10697

    [31]

    Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504

  • [1]

    Wada K, Egashira M 2000 Sens. Actuators B 62 211

    [2]

    Park S J, Park J, Lee H Y, Moon S E, Park K H, Kim J, Maeng S, Udrea F, Milne W I, Kim G T 2010 J. Nanosci. Nanotechno. 10 3385

    [3]

    Moon S E, Lee H Y, Park J, Lee J W, Choi N J, Park S J, Kwak J H, Park K H, Kim J, Cho G H, Lee T H, Maeng S, Udrea F, Milne W I 2010 J. Nanosci. Nanotechno. 10 3189

    [4]

    Miyazaki H, Hyodo T, Shimizu Y, Egashira M 2005 Sens. Actuators B 108 467

    [5]

    Yu Z, Dang Z, Ke X Z, Cui Z 2016 Acta Phys. Sin. 65 248103 (in Chinese) [禹忠, 党忠, 柯熙政, 崔真 2016 物理学报 65 248103]

    [6]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [7]

    Chung M G, Kim D H, Lee H M, Kim T, Choi J H, Seo D K, Yoo J B, Hong S H, Kang T J, Kim Y H 2012 Sens. Actuators B. 166-167 172

    [8]

    Yasaei P, Kumar B, Hantehzadeh R, Kayyalha M, Baskin A, Repnin N, Wang C, Klie R F, Chen Y P, Krl P, Salehi-Khojin A 2014 Nat. Commun. 5 4911

    [9]

    Venugopal G, Krishnamoorthy K, Mohan R, Kim S J 2012 Mater. Chem. Phys. 132 29

    [10]

    Guo L, Jiang H B, Shao R Q, Zhang Y L, Xie S Y, Wang J N, Li X B, Jiang F, Chen Q D, Zhang T, Sun H B 2012 Carbon. 50 1667

    [11]

    Peng Y, Li J H 2013 Front. Environ. Sci. Eng. 7 403

    [12]

    You R C, Yoon Y G, Choi K S, Kang J H, Shim Y S, Kim Y H, Chang H J, Lee J H, Park C R, Kim S Y, Jang H W 2015 Carbon. 91 178

    [13]

    Chu B H, Lo C F, Nicolosi J, Chang C Y, Chena V, Strupinskic W, Peartonb S J, Rena F 2011 Sens. Actuators B. 157 500

    [14]

    Pandey P A, Wilson N R, Covington J A 2013 Sens. Actuators B. 183 478

    [15]

    Anand K, Singh O, Singh M P, Kaur J, Singh R C 2014 Sens. Actuators B 195 409

    [16]

    Hou R N, Peng T J, Sun H J 2015 J. Funct. Mater. 46 16079 (in Chinese) [侯若男, 彭同江, 孙红娟 2015 功能材料 46 16079]

    [17]

    Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A 2013 Nanoscale 5 5426

    [18]

    Lu G, Ocola L E, Chen J 2009 Nanotechnology 20 19351

    [19]

    Yang Y H, Sun H J, Peng T J, Huang Q 2011 Acta Phys.-Chim. Sin. 27 736 (in Chinese) [杨永辉, 孙红娟, 彭同江, 黄桥 2011 物理化学学报 27 736]

    [20]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [21]

    Wang J D, Peng T J, Sun H J 2014 Acta Phys.-Chim. Sin. 30 2077 (in Chinese) [汪建德, 彭同江, 孙红娟 2014 物理化学学报 30 2077]

    [22]

    Ferrari A C 2007 Solid State Commun. 143 47

    [23]

    Chen J G, Peng T J, Sun H J 2014 J. Inorg. Chem. 30 779 (in Chinese) [陈军刚, 彭同江, 孙红娟 2014 无机化学学报 30 779]

    [24]

    Bi H, Yin K, Xie X, Ji J, Wan S, Sun L T, Terrones M, Dresselhaus M 2013 Sci Rep. 3 2714

    [25]

    Rimeika R, Barkauskas J, Čiplys D 2011 Appl Phys Lett. 99 051915

    [26]

    Shang D, Lin L B, He J 2005 J. Sichuan University 42 523 (in Chinese) [尚东, 林理彬, 何捷 2005 四川大学学报(自然科学版) 42 523]

    [27]

    Hou R N, Peng T J, Sun H J 2014 J. Synthe. Cry. 43 2656 (in Chinese) [侯若男, 彭同江, 孙红娟 2014 人工晶体学报 43 2656]

    [28]

    Wang J, Kwak Y, Lee I Y, Maeng S, Kim G H 2012 Carbon 50 4061

    [29]

    Xu Z, Xue K 2010 Nanotechnology 21 19

    [30]

    Boukhvalov D W, Katsnelson M I 2008 J. Am. Chem. Soc. 130 10697

    [31]

    Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504

  • [1] 陈进龙, 陶然, 李冲, 张健磊, 付琛, 罗景庭. 基于SnS2/In2O3的气体传感器及其室温下高性能NO2检测. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231554
    [2] 董逸蒙, 孙永娇, 侯煜晨, 王炳亮, 陆志远, 张文栋, 胡杰. SnO2/ZnS异质结气体传感器的制备及其室温NO2敏感特性. 物理学报, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [3] 张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜. 不同充放电模式影响还原氧化石墨烯电极储锂性能的实验分析. 物理学报, 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [4] 李醒龙, 赵浩宇, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮. 氧化石墨烯修饰倾斜光纤光栅10–12级重金属离子传感. 物理学报, 2022, 71(5): 050702. doi: 10.7498/aps.71.20211315
    [5] 陆海林, 段芳莉. 硅基材料界面石墨烯片层运动行为及其摩擦特性. 物理学报, 2021, 70(14): 143101. doi: 10.7498/aps.70.20210088
    [6] 刘益, 钱正洪, 朱建国. 室温磁性斯格明子材料及其应用研究进展. 物理学报, 2020, 69(23): 231201. doi: 10.7498/aps.69.20200984
    [7] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究. 物理学报, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [8] 李闯, 蔡理, 李伟伟, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 李成, 危波. 水合肼还原的氧化石墨烯吸附NO2的实验研究. 物理学报, 2019, 68(11): 118102. doi: 10.7498/aps.68.20182242
    [9] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究. 物理学报, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [10] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器. 物理学报, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [11] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华. 基于温度的亚稳态氧化石墨烯性能. 物理学报, 2019, 68(15): 156501. doi: 10.7498/aps.68.20190670
    [12] 李文静, 光耀, 于国强, 万蔡华, 丰家峰, 韩秀峰. 薄膜异质结中磁性斯格明子的相关研究. 物理学报, 2018, 67(13): 131204. doi: 10.7498/aps.67.20180549
    [13] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 物理学报, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [14] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [15] 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 氧化石墨烯基功能纸的简易制备和染料吸附性能. 物理学报, 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [16] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光. 氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究. 物理学报, 2014, 63(8): 084202. doi: 10.7498/aps.63.084202
    [17] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [18] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究. 物理学报, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [19] 秦玉香, 王飞, 沈万江, 胡明. 氧化钨纳米线-单壁碳纳米管复合型气敏元件的室温NO2敏感性能与机理. 物理学报, 2012, 61(5): 057301. doi: 10.7498/aps.61.057301
    [20] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
计量
  • 文章访问数:  9000
  • PDF下载量:  678
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-10
  • 修回日期:  2016-12-12
  • 刊出日期:  2017-04-05

/

返回文章
返回