搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag、Cu掺杂氧化石墨烯吸附NH3的第一性原理研究

万煜炜 王瑞 周文权 王一平 蔡亚楠 王常

引用本文:
Citation:

Ag、Cu掺杂氧化石墨烯吸附NH3的第一性原理研究

万煜炜, 王瑞, 周文权, 王一平, 蔡亚楠, 王常

First-principles study on NH3 adsorption on Ag- and Cu-doped graphene oxide

Wan Yu-Wei, Wang Rui, Zhou Wen-Quan, Wang Yi-Ping, Cai Ya-Nan, Wang Chang
PDF
导出引用
  • 基于第一性原理的密度泛函理论,本文系统研究了氧化石墨烯及其Ag与Cu掺杂对NH3分子的吸附特性.通过计算电荷分布、态密度、能带结构和吸附能,研究了含氧基团及金属掺杂对氧化石墨烯气敏性能的调控效应.通过对掺杂Ag原子的氧化石墨烯的态密度进行分析,发现Ag原子与NH3中的N原子的s、p和d轨道之间存在共振,表明Ag原子和N原子之间形成了化学键.这种化学键导致Ag对NH3的吸附作用明显强于含氧基团,从而使得掺杂后的氧化石墨烯的吸附能提升了数倍.此外,Cu掺杂氧化石墨烯同样能够显著提升其对NH3的吸附性能.在掺杂浓度均为3.13%的条件下,Cu掺杂的氧化石墨烯对NH3表现出更强的吸附能力.同时,Ag或Cu掺杂的氧化石墨烯中,羧基和环氧基对NH3的吸附模式由物理吸附转变为化学吸附;而羟基则在掺杂前后始终显示出化学吸附特性.综上所述,金属掺杂的氧化石墨烯的吸附能会受到含氧基团和金属原子共同作用影响,且Ag或Cu原子掺杂能显著提高氧化石墨烯对NH3的吸附性能.
    Graphene has attracted great attention due to its large specific surface area,high charge carrier mobility,and excellent electrical conductivity.However,the inherent structural integrity and zero bandgap characteristics of graphene limit its gas sensing properties.Consequently,researchers have embarked on exploring avenues such as doping graphene or leveraging graphene oxide as a gas-sensitive material to design gas sensors that respond optimally to ammonia.This study,based on first-principle density functional theory,focuses on the field of ammonia gas sensors,investigating in detail the adsorption characteristics of ammonia molecules on graphene oxide (GO) and graphene oxide doped with Ag and Cu (AgGO, CuGO).By calculating parameters encompassing charge distribution,density of states,band structures,and adsorption energies,the study delves into the influence of diverse oxygen-containing groups and metal doping on the gas sensing properties of graphene oxide.The research results demonstrate a substantial charge density overlap between the density of states of hydroxyl groups in graphene oxide and NH3 molecules,thereby indicating a pronounced chemical adsorption propensity.Particularly noteworthy is the observation that post-NH3 adsorption,the hydroxyl-containing graphene oxide exhibits the highest charge transfer (0.078e) and adsorption energy (0.60 eV),signifying its superior adsorption efficacy towards NH3,followed by carboxyl groups,with epoxy groups displaying comparably weaker adsorption capabilities, wherein the latter two primarily engage in physical adsorption.Furthermore,the study delves into the impact of metal doping on graphene oxide,evidencing that the adsorption capability of doped graphene oxide hinges upon the synergistic influence of oxygen-containing groups and metal atoms,with Ag-doped graphene oxide showing a several-fold increase in adsorption energy.Through density of states analysis,it transpires that Ag atoms resonate with s,p,and d orbitals of the N atom in NH3,proving the formation of a chemical bond between Ag atoms and N atoms. Moreover,a comparative analysis shows that Cu-doped graphene oxide (CuGO) has an increased charge transfer of about 0.020e and slightly higher adsorption energy compared to Ag-doped graphene oxide (AgGO) when adsorbing NH3.Intriguingly, under the same doping concentration,CuGO exhibits superior adsorption performance towards NH3. Significantly,within Graphene Oxide doped with Ag or Cu,the adsorption mechanism of carboxyl and epoxy groups transitions from physical to chemical adsorption,while the hydroxyl groups maintain consistent chemical adsorption properties pre and post-doping.This suggests that doping with Ag or Cu atoms can significantly enhance the adsorption capability of graphene oxide towards NH3.
  • [1]

    Yu Z,Wang B,Li Y,Kang D,Chen Z,& Wu Y 2017Rsc Adv.7 22599

    [2]

    Hibbard T,Killard A J 2011Crit.Rev.Anal.Chem.41 21

    [3]

    Risby T H,Solga S F 2006Appl.Phys.B-LASERS O.85 421

    [4]

    Ishpal I,Kaur A 2013 J.Appl.Phys.113 938

    [5]

    Wang J,Yang P,& Wei X 2015Acs Appl.Mater.Inter.7 3816

    [6]

    Li Y,Li H,& Zhao F L 2024Phys.Status Solidi-RRL 182400015

    [7]

    Mirzaei M,Roohollahi H,Bagheri H 2024Progresses in Ammonia: Science, Technology and Membranes pp69-94

    [8]

    Kwak D,Lei Y,Maric R 2019Talanta 204 713

    [9]

    Zhu Y,Murali S,Cai W,Li X,Suk J W,& Potts J R 2010Adv.Mater.22 3906

    [10]

    Wu J,Lin H,Moss D J 2023Nat.Rev.Chem.7 162

    [11]

    Bi J,Du Z,Sun J 2023Adv.Mater.35 2210734

    [12]

    Schedin F,Geim A K,Morozov S V 2007Nat.Mate.6 652

    [13]

    Peng Y,Li J. 2013Front.Env.Sci.Eng.7 403

    [14]

    Luo H,Zhang L,Xu S 2021Appl.Surf.Sci.537 147542

    [15]

    Park M S,Kim K H,Kim M J 2016Colloid Surface A 490 104

    [16]

    Raza W,Krupanidhi S B 2018ACS Appl.Mater.Interfaces 10 25285

    [17]

    Tran Q T,Hoa H T M,Yoo D H 2014Sensor Actuat.B-Chem.194 45

    [18]

    Karaduman I,Er E,Çelikkan H 2017J.Alloy Compd.722 569

    [19]

    Zhang L,Tan Q,Kou H 2019Sci.Rep.9 9942

    [20]

    Saleh A M,Albiss B A 2024ChemistrySelect 9 e202401500

    [21]

    Li Q,Liu Y,Chen D 2021Chemosensors 9 227

    [22]

    Rawat S,Bamola P,Negi S 2023ACS Appl.Nano Mater.7 746

    [23]

    Sinnott S B 2013J.Vac.Sci.Technol.A 31 050812

    [24]

    Delley B 1990J.Chem.Phys.92 508

    [25]

    Delley B 2000J.Chem.Phys.113 7756

    [26]

    Lerf A,He H,Forster M 1998J.Phys.Chem.B.102 4477

    [27]

    Szabó T,Berkesi O,Forgó P 2006Chem.Mater.18 2740

    [28]

    Liu H,Liu Y,Zhu D 2011J.Mater.Chem.21 3335

    [29]

    Guo B,Fang L,Zhang B 2011 Insciences J.1 80

    [30]

    Geim A K,Novoselov K S 2007Nat.Mater.6 183

    [31]

    Wei D,Zhao C,Khan A 2019Chem.Eng.J.375 121964

    [32]

    Yan J A,Chou M Y 2010Phys.Rev.B 82 125403

    [33]

    Wang X,Huang S X,Luo H,Deng L W,Wu H,Xu Y C,He J,He L H 2019Acta.Phys.Sin.68 268(in Chinese) [王晓,黄生祥,罗衡,邓联文,吴昊,徐运超,贺军,贺龙辉2019物理学报68 268]

    [34]

    Giovannetti G,Khomyakov P A,Brocks G 2008Phys.Rev.Lett.101 026803

  • [1] 胡军平, 梁丝思, 段惠贤, 田俊程, 陈硕, 戴柏杨, 黄春来, 刘宇, 吕营, 万利佳, 欧阳楚英. 氮氧锚定的单原子铜掺杂石墨烯作为碱离子电池负极的理论预测研究. 物理学报, doi: 10.7498/aps.74.20241461
    [2] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算. 物理学报, doi: 10.7498/aps.73.20240992
    [3] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, doi: 10.7498/aps.71.20211631
    [4] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20201287
    [5] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20211631
    [6] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20191304
    [7] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, doi: 10.7498/aps.67.20172290
    [8] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究. 物理学报, doi: 10.7498/aps.65.056801
    [9] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究. 物理学报, doi: 10.7498/aps.65.018201
    [10] 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 氧化石墨烯基功能纸的简易制备和染料吸附性能. 物理学报, doi: 10.7498/aps.65.146802
    [11] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, doi: 10.7498/aps.65.133102
    [12] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.64.087101
    [13] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.64.207101
    [14] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, doi: 10.7498/aps.64.013101
    [15] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, doi: 10.7498/aps.63.163101
    [16] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, doi: 10.7498/aps.62.187102
    [17] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.62.037103
    [18] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, doi: 10.7498/aps.62.047101
    [19] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO. 物理学报, doi: 10.7498/aps.62.036301
    [20] 魏彦薇, 杨宗献. Au在Zr掺杂的CeO2(110)面吸附的第一性原理研究. 物理学报, doi: 10.7498/aps.57.7139
计量
  • 文章访问数:  57
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-09

/

返回文章
返回