搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti掺杂NbSe2电子结构的第一性原理研究

徐晶 梁家青 李红萍 李长生 刘孝娟 孟健

引用本文:
Citation:

Ti掺杂NbSe2电子结构的第一性原理研究

徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健

First-principles study on the electronic structure of Ti-doped NbSe2

Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian
PDF
导出引用
  • 采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法, 计算了理想2H-NbSe2和Ti掺杂2H-NbSe2晶体的几何结构及电子结构; 对掺杂前后超胞的能带图、态密度及分波态密度图进行了分析. 结果表明, 掺杂后费米能级附近能量区域的电子态密度出现了较高的峰值, 且费米能级位置发生了改变. 理论上可以认为Ti的掺杂会使得NbSe2的导电性增强, 有利于开发新型的电接触复合材料.
    Layered transition metal dichalcogenides (LTMDs) have renewed interest as electronic materials, but the poor conductivities hinder their further development. Chemical doping can often significantly modify atomic structures and electronic functionalities of a wide range of materials and thus acts as one of the most effective ways to precisely tune material properties for technological application. Here, the geometries and band structures as well as the densities of states of pure NbSe2 and Ti-doped NbSe2 nanostructure are studied by employing the ab-initio plane-wave ultra-soft pseudo potential technique based on the density functional theory. We optimize the ground state of NbSe2 in the layered structure by using the generalized gradient approximation for the exchange-correlation potential. The computational structural parameters are in good agreement with experimental values within 2.5%. To investigate the stability of the doped system with changing the concentration of Ti atoms, 2×2×1 2H-NbSe2 supercells are taken into consideration. Meanwhile, we consider a total of three possible Ti-doping models: substitution, intercalation, and embedded model, and investigate the energy band diagrams, state densities and densities of partial wave state diagram before and after the doping. The results show that the energy electron density of states reaches a higher peak, and the band structure near Fermi level (EF) is changed obviously, resulting in the variations of the band gap and EF position and then the increase of electronic conductivity after doping. In addition, our calculations also predict that the electron transport properties can be enhanced by doping Ti and it can be regarded as a useful way to tailor electronic states so as to improve electron transport properties of 2H-NbSe2. Such a remarkable modification of electronic structure of 2H-NbSe2 by chemical doping offers an additional way of modulating performances of LTMDs and developing new electrical contact composite materials.
    • 基金项目: 国家自然科学基金(批准号: 51302112)、江苏省高校自然科学项目(批准号: 14KJB430009) 和江苏省研究生培养创新工程(批准号: CXZZ130669)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51302112), the Nature Science Foundation of Jiangsu Colleges and Universities, China (Grant No. 14KJB430009), and the Jiangsu Graduate Student Innovation Project, China (Grant No. CXZZ13_0669).
    [1]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [2]

    Song S S, Howard S, Liu Z J, Afusat O 2006 Appl. Phys. Lett. 89 041115

    [3]

    Chang K, Chen W X 2011 J. Mater. Chem. 21 17175

    [4]

    Xu J, Tang H, Chu Y Q, Li C S 2015 RSC. Adv. 5 48492

    [5]

    Tenne R 1995 Adv. Mater. 7 965

    [6]

    津田谷裕子, 松永が长いです 1978 固体潤滑ハンドブック (Vol.1) (Beijing: Mechanical Industry Press) p268 (in Chinese) [津谷裕子, 松永正久 1978 固体润滑手册(第一版)(北京: 机械工业出版社) 第268页]

    [7]

    Rowe G W 1960 Wear 3 274

    [8]

    Winer W O 1967 Wear 10 422

    [9]

    Qin X P, Ke P L, Wang A Y, Kim K H 2013 Surf. Coat. Technol. 228 275

    [10]

    Wang Z G, Su Q L, Yin G Q, Shi J, Deng H Q, Guan J, Wu M P, Zhou Y L, Lou H L, Fu Y Q 2014 Mater. Chem. Phys. 147 1068

    [11]

    Snure M, Kumar D, Tiwari A 2009 Appl. Phys. Lett. 94 012510

    [12]

    Zheng S W, He M, Li S T, Zhang Y 2014 Chin. Phys. B 23 087101

    [13]

    Wang Y Z, Xu Z P, Zhang W X, Zhang X, Wang Q, Zhang L 2014 Acta Phys. Sin. 63 237101 (in Chinese) [王永贞, 徐朝鹏, 张文秀, 张欣, 王倩,张磊 2014 物理学报 63 237101]

    [14]

    Koh Y Y, Kim Y K, Jung W S 2011 Phys. Chem. Solids 72 565

    [15]

    Iavarone M, Karapetrov G, Fedor J 2010 Phys.: Condens. Matter. 22 015501

    [16]

    Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 物理学报 62 037103]

    [17]

    Hammer B, Hansen L B, Nørskov J K 1999 Phys. Rev. B 59 7413

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Zheng S W, Fan G H, He M, Zhao L Z 2012 Acta Phys. Sin. 61 057102 (in Chinese) [郑树文, 范广涵, 何苗, 赵灵智 2012 物理学报 61 057102]

    [20]

    Sun J, Wang H T, He J 2005 Phys. Rev. B 71 125132

  • [1]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [2]

    Song S S, Howard S, Liu Z J, Afusat O 2006 Appl. Phys. Lett. 89 041115

    [3]

    Chang K, Chen W X 2011 J. Mater. Chem. 21 17175

    [4]

    Xu J, Tang H, Chu Y Q, Li C S 2015 RSC. Adv. 5 48492

    [5]

    Tenne R 1995 Adv. Mater. 7 965

    [6]

    津田谷裕子, 松永が长いです 1978 固体潤滑ハンドブック (Vol.1) (Beijing: Mechanical Industry Press) p268 (in Chinese) [津谷裕子, 松永正久 1978 固体润滑手册(第一版)(北京: 机械工业出版社) 第268页]

    [7]

    Rowe G W 1960 Wear 3 274

    [8]

    Winer W O 1967 Wear 10 422

    [9]

    Qin X P, Ke P L, Wang A Y, Kim K H 2013 Surf. Coat. Technol. 228 275

    [10]

    Wang Z G, Su Q L, Yin G Q, Shi J, Deng H Q, Guan J, Wu M P, Zhou Y L, Lou H L, Fu Y Q 2014 Mater. Chem. Phys. 147 1068

    [11]

    Snure M, Kumar D, Tiwari A 2009 Appl. Phys. Lett. 94 012510

    [12]

    Zheng S W, He M, Li S T, Zhang Y 2014 Chin. Phys. B 23 087101

    [13]

    Wang Y Z, Xu Z P, Zhang W X, Zhang X, Wang Q, Zhang L 2014 Acta Phys. Sin. 63 237101 (in Chinese) [王永贞, 徐朝鹏, 张文秀, 张欣, 王倩,张磊 2014 物理学报 63 237101]

    [14]

    Koh Y Y, Kim Y K, Jung W S 2011 Phys. Chem. Solids 72 565

    [15]

    Iavarone M, Karapetrov G, Fedor J 2010 Phys.: Condens. Matter. 22 015501

    [16]

    Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 物理学报 62 037103]

    [17]

    Hammer B, Hansen L B, Nørskov J K 1999 Phys. Rev. B 59 7413

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Zheng S W, Fan G H, He M, Zhao L Z 2012 Acta Phys. Sin. 61 057102 (in Chinese) [郑树文, 范广涵, 何苗, 赵灵智 2012 物理学报 61 057102]

    [20]

    Sun J, Wang H T, He J 2005 Phys. Rev. B 71 125132

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [2] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [3] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [4] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学. 物理学报, 2022, 71(7): 074207. doi: 10.7498/aps.70.20220270
    [5] 袁永浩, 薛其坤, 李渭. FeSe/SrTiO3高温超导体中的电子条纹相. 物理学报, 2022, 71(12): 127304. doi: 10.7498/aps.71.20220118
    [6] 李靖, 刘运全. 基于相对论自由电子的量子物理. 物理学报, 2022, 71(23): 233302. doi: 10.7498/aps.71.20221289
    [7] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [8] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [9] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [10] 曹春蕾, 徐进良, 叶文力. 周期性爆沸诱导的液滴自驱动. 物理学报, 2021, 70(24): 244703. doi: 10.7498/aps.70.20211386
    [11] 姚春霞, 何其利, 张锦, 付天宇, 吴朝, 王山峰, 黄万霞, 袁清习, 刘鹏, 王研, 张凯. 免分析光栅一次曝光相位衬度成像方法. 物理学报, 2021, 70(2): 028701. doi: 10.7498/aps.70.20201170
    [12] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [13] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [14] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [15] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [16] 吴飞, 黄威, 陈文渊, 肖勇, 郁殿龙, 温激鸿. 基于微孔板与折曲通道的亚波长宽带吸声结构设计. 物理学报, 2020, 69(13): 134303. doi: 10.7498/aps.69.20200368
    [17] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [18] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [19] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [20] 王庆玲, 迪拉热·哈力木拉提, 沈玉玲, 艾尔肯·斯地克. 多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响. 物理学报, 2019, 68(10): 100701. doi: 10.7498/aps.68.20182272
计量
  • 文章访问数:  5539
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-05
  • 修回日期:  2015-06-08
  • 刊出日期:  2015-10-05

/

返回文章
返回