搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr和W掺杂的单层MoS2电子结构的第一性原理研究

吴木生 徐波 刘刚 欧阳楚英

引用本文:
Citation:

Cr和W掺杂的单层MoS2电子结构的第一性原理研究

吴木生, 徐波, 刘刚, 欧阳楚英

First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2

Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying
PDF
导出引用
  • 采用密度泛函理论框架下的第一性原理平面波赝势方法, 研究了Cr和W掺杂对单层二硫化钼(MoS2)晶体的电子结构性质的影响. 计算结果表明: 当掺杂浓度较高时, W对MoS2的能带结构几乎没有影响, 而Cr的掺杂则影响很大, 表现为能带由直接带隙变为间接带隙, 且禁带宽度减小. 通过进一步分析, 得出应力的产生是导致Cr掺杂的MoS2电子结构变化的最直接的原因.
    We study the electronic properties of Cr- and W-doped single-layer MoS2 using an ab initio method according to the density functional theory. Our calculated results show the energy band structures of MoS2 are significantly affected by Cr doping, but not by W doping at a high doping concentration. The effects of Cr doping manifest as the transition of energy band structure from direct to indirect, and the decrease of band gap. Our further analysis reveals that strain is the direct reason for the change of electronic structure in the Cr-doped MoS2.
    • 基金项目: 国家自然科学基金(批准号: 10904054)、江西省自然科学基金(批准号: 2009GQW008, 2010GZW0028)、江西省光电子与通信重点实验室(江西师范大学)和江西师范大学青年英才培育资助计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10904054), Jiangxi Natural Science Foundation, China (Grant Nos. 2009GQW008, 2010GZW0028), Key Laboratory of Photoelectronics and Telecomm-Unication of Jiangxi Province, China (Jiangxi Normal University) and Cultivating Youths of Outstanding Ability in Jiangxi Normal University, China.
    [1]

    Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R, Sasaki T 2003 Nature 422 53

    [2]

    Shishidou T, Freeman A, Asah R 2001 Phys. Rev. B 64 180401

    [3]

    Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76

    [4]

    Reed C A, Cheung S K 1977 Proceedings of the National Academy of Sciences 74 1780

    [5]

    Puthussery J, Seefeld S, Berry N, Gibbs M, Law M 2011 J. Am. Chem. Soc. 133 716

    [6]

    Bromley R A, Yoffe A D, Murray R B 1972 J. Phys. C 5 759

    [7]

    Mattheis L F 1973 Phys. Rev. Lett. 30 784

    [8]

    Coehoorn R, Haas C, Degroot R A 1987 Phys. Rev. B 35 6203

    [9]

    Li T S, Galli G L 2007 J. Phys. Chem. C 111 16192

    [10]

    Lebegue S, Eriksson O 2009 Phys. Rev. B 79 115409

    [11]

    Mdleni M M, Hyeon T, Suslick K S 1998 J. Am. Chem. Soc. 120 6189

    [12]

    Rapport L, Bilik Y, Homyonfer M 1997 Nature 387 791

    [13]

    Dominko R, Arcon D, Mrzel A 2002 Adv. Mater. 14 1591

    [14]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [15]

    Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [16]

    Kuc A, Zibouche N, Heine T 2011 Phys. Rev. B 83 245213

    [17]

    Korn T, Heydrich S, Hirmer M, Schmutzler J, Schuller C 2011 Appl. Phys. Lett. 99 102109

    [18]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [19]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotech 6 147

    [20]

    Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H 2012 Small 8 63

    [21]

    Popov I, Seifert G, Tomanek D 2012 Phys. Rev. Lett. 108 156802

    [22]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M 2011 Nano Lett. 11 5111

    [23]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [24]

    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 Nano 6 74

    [25]

    Ding Y, Wang Y L, Ni J, Shi L, Shi S Q, Tang W H 2011 Physica B 406 2254

    [26]

    Xu B, Pan B C 2008 Acta Phys. Sin. 57 6526 (in Chinese) [徐波, 潘必才 2008 物理学报 57 6526]

    [27]

    Rao J P, Ouyang C Y, Lei M S, Jiang F Y 2012 Acta Phys. Sin. 61 47105 (in Chinese) [饶建平, 欧阳楚英, 雷敏生, 江风益 2012 物理学报 61 47105]

    [28]

    Monkhorst H J, Pack J F 1979 Phys. Rev. B 13 5188

    [29]

    Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193

    [30]

    Li Y, Zhou Z, Zhang S, Chen Z 2008 J. Am. Chem. Soc. 130 16739

    [31]

    Kam K K, Parkinson B A 1982 J. Phys. Chem. 86 463

    [32]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 33305

  • [1]

    Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R, Sasaki T 2003 Nature 422 53

    [2]

    Shishidou T, Freeman A, Asah R 2001 Phys. Rev. B 64 180401

    [3]

    Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76

    [4]

    Reed C A, Cheung S K 1977 Proceedings of the National Academy of Sciences 74 1780

    [5]

    Puthussery J, Seefeld S, Berry N, Gibbs M, Law M 2011 J. Am. Chem. Soc. 133 716

    [6]

    Bromley R A, Yoffe A D, Murray R B 1972 J. Phys. C 5 759

    [7]

    Mattheis L F 1973 Phys. Rev. Lett. 30 784

    [8]

    Coehoorn R, Haas C, Degroot R A 1987 Phys. Rev. B 35 6203

    [9]

    Li T S, Galli G L 2007 J. Phys. Chem. C 111 16192

    [10]

    Lebegue S, Eriksson O 2009 Phys. Rev. B 79 115409

    [11]

    Mdleni M M, Hyeon T, Suslick K S 1998 J. Am. Chem. Soc. 120 6189

    [12]

    Rapport L, Bilik Y, Homyonfer M 1997 Nature 387 791

    [13]

    Dominko R, Arcon D, Mrzel A 2002 Adv. Mater. 14 1591

    [14]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [15]

    Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [16]

    Kuc A, Zibouche N, Heine T 2011 Phys. Rev. B 83 245213

    [17]

    Korn T, Heydrich S, Hirmer M, Schmutzler J, Schuller C 2011 Appl. Phys. Lett. 99 102109

    [18]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [19]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotech 6 147

    [20]

    Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H 2012 Small 8 63

    [21]

    Popov I, Seifert G, Tomanek D 2012 Phys. Rev. Lett. 108 156802

    [22]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M 2011 Nano Lett. 11 5111

    [23]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [24]

    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 Nano 6 74

    [25]

    Ding Y, Wang Y L, Ni J, Shi L, Shi S Q, Tang W H 2011 Physica B 406 2254

    [26]

    Xu B, Pan B C 2008 Acta Phys. Sin. 57 6526 (in Chinese) [徐波, 潘必才 2008 物理学报 57 6526]

    [27]

    Rao J P, Ouyang C Y, Lei M S, Jiang F Y 2012 Acta Phys. Sin. 61 47105 (in Chinese) [饶建平, 欧阳楚英, 雷敏生, 江风益 2012 物理学报 61 47105]

    [28]

    Monkhorst H J, Pack J F 1979 Phys. Rev. B 13 5188

    [29]

    Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193

    [30]

    Li Y, Zhou Z, Zhang S, Chen Z 2008 J. Am. Chem. Soc. 130 16739

    [31]

    Kam K K, Parkinson B A 1982 J. Phys. Chem. 86 463

    [32]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 33305

计量
  • 文章访问数:  5817
  • PDF下载量:  3224
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-07
  • 修回日期:  2012-09-08
  • 刊出日期:  2013-02-05

Cr和W掺杂的单层MoS2电子结构的第一性原理研究

  • 1. 江西师范大学物理与通信电子学院, 南昌 330022
    基金项目: 国家自然科学基金(批准号: 10904054)、江西省自然科学基金(批准号: 2009GQW008, 2010GZW0028)、江西省光电子与通信重点实验室(江西师范大学)和江西师范大学青年英才培育资助计划资助的课题.

摘要: 采用密度泛函理论框架下的第一性原理平面波赝势方法, 研究了Cr和W掺杂对单层二硫化钼(MoS2)晶体的电子结构性质的影响. 计算结果表明: 当掺杂浓度较高时, W对MoS2的能带结构几乎没有影响, 而Cr的掺杂则影响很大, 表现为能带由直接带隙变为间接带隙, 且禁带宽度减小. 通过进一步分析, 得出应力的产生是导致Cr掺杂的MoS2电子结构变化的最直接的原因.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回