搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究硫化镉高压相变及其电子结构与弹性性质

周平 王新强 周木 夏川茴 史玲娜 胡成华

引用本文:
Citation:

第一性原理研究硫化镉高压相变及其电子结构与弹性性质

周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华

First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS

Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua
PDF
导出引用
  • 采用第一性原理研究了CdS的六方纤锌矿(WZ), 立方闪锌矿(ZB) 和岩盐矿(RS)相在高压条件下的相稳定性、 相变点、电子结构以及弹性性能.WZ相与RS 相可以在相应的压强范围内稳定存在, 而ZB相不能稳定存在.压强大于2.18 GPa时, WZ相向RS相发生金属化相变.WZ相中S原子电负性大于Cd, 且电负性差值小于1.7, CdS的WZ相为共价晶体.高压作用下, S原子半径被强烈压缩, 有效核电荷增加, 对层外电子吸引能力提高, 电负性急剧增大, 导致S与Cd的电负性差值大于1.7, CdS的RS相以离子晶体存在. WZ相的C44随压强增加呈下降趋势, 导致WZ相力学不稳定, 并向RS相转变.当压强大于2.18 GPa时, RS相C11, C12随压强增加而增大, 并且C44保持稳定, 说明RS相具有良好的高压稳定性与力学性能.
    In this work, phase stabilities, phase transitions, electronic structures and elastic properties of wurtzite structure (WZ), zinc-blende structure (ZB) and rocksalt struture (RS) phase of CdS are studied by first principles method. Results indicate that WZ and RS phases could be stable in corresponding pressure areas. However, ZB phase could not be stable. Pressure-induced metallic phase transition from WZ to RS will occur at 2.18 GPa. Electronegativity of S atom in WZ phase is much more than that of Cd atom, and the difference in electronegativity between S and Cd is less than 1.7, which induces covalent crystal of CdS. Under the condition of high pressure, radius of S is reduced sharply, which causes the increase of effective nuclear charge. Large nuclear charge will enhance the ability to attract electrons of outer shell, which will cause larger electronegativity. When pressure is higher than 2.18 GPa, the difference in electronegativity is more than 1.7. Then, CdS will be ionic crystal. C44 of WZ phase decreases with pressure, resulting in mechanical instability. And then,the WZ-to-RS phase transition occurs at 2.18 GPa. Moreover, C11 and C12 of RS phase increase with pressure. At the same time, C44 of RS is stable with pressure increasing entirely, all of which shows that RS phase has excellent stability and mechanical property under high pressure.
    [1]

    Enífquez J P, Mathew X 2003 Sol. Energy Mater. Sol. Cell 76 313

    [2]

    Li C X, Dang S H 2012 Acta Phys. Sin. 61 017202 (in Chinese) [李春霞, 党随虎 2012 物理学报 61 017202]

    [3]

    Sahay P P, Nath R K, Tewari S 2007 Cryst. Res. Technol. 42 275

    [4]

    Fernee M, Watt A, Warner J, Cooper S, Heckenberg N, Rubinsztein-Dunlop H 2003 Nanotechnology 14 991

    [5]

    Greenwood N N, Earnshaw A 1997 Chemistry of the Elements (2nd Ed.) (Oxford:Butterworth-Heinemann)

    [6]

    Zakharov O, Rubio A, Blasé X, Cohen M L, Louie S G 1994 Phys. Rev. B 50 10780

    [7]

    Xu Y N, Ching W Y 1993 Phys. Rev. B 48 4335

    [8]

    Weber M J 1986 Handbook of Laser Science and Technology (Vol. III) (Cleveland:CRC Press)

    [9]

    Ley L, Pollak R A, Mcfeely F R, Kowalczyk S P, Shirley D A 1974 Phys. Rev. B 9 600

    [10]

    Wei S, Zhang S B 2000 Phys. Rev. B 62 6944

    [11]

    Li C X 2007 J. At. Mol. Phys. 4 1060 (in Chinese) [李春霞 2007 原子与分子物理学报 4 1060]

    [12]

    Ni L H, Liu Y, Song C L, Xu G, Han G R 2008 Rare Metal Materials and Engineering 37 623 (in Chinese) [倪利红, 刘涌, 宋晨路, 徐刚, 韩高荣 2008 稀有金属材料与工程 37 623]

    [13]

    Tan J J, Li Y, Ji G F 2011 Acat Phys. Polonica A 120 501

    [14]

    Osugi J, Shimizu K, Nakamura T, Onodera A 1966 Rev. Phys. Chem. Jpn. 36 65

    [15]

    Edwards A L, Slykhouse T E, Drickamer H G 1959 J. Phys. Chem. Solids 11 140

    [16]

    Edwards A L, Drickamer H G 1961 Phys. Rev. 122 1149

    [17]

    Benkhettou N, Rached D, Soudini B, Driz M 2004 Phys. Status Solidi B 241 101

    [18]

    Corll J A 1964 J. Appl. Phys. 35 3032

    [19]

    Payne M C, Teter M P, Allen D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [20]

    Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895

    [21]

    Hamann D R, Schluter M, Chiang C 1979 Phys. Rev. Lett. 43 1494

    [22]

    Bachelet G B, Hamann D R, Schluter M 1982 Phys. Rev. B 26 4199

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413

    [27]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [28]

    Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116

    [29]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406

    [30]

    Fast L, Wills J M, Johansson B, Eriksson O 1995 Phys. Rev. B 51 17431

    [31]

    Sin'ko G V, Smirnow N A 2002 J. Phys. Condens. Matter 14 6989

    [32]

    Suzuki T, Yagi T, Akimoto S, Kawamura T, Toyoda S, Endo S 1983 J. Appl. Phys. 54 748

    [33]

    Madelung E O, Schölz M, Weiss H, Landolt-Börnsten 1982 Numerical Data and Tunctional Relationship in Science and Technology (Vol. 17) (Berlin:Springer)

    [34]

    Yeh C Y, Lu Z W, Froyen S, Zunger A 1992 Phys. Rev. B 46 10086

    [35]

    Wright K, Gale J D 2004 Phys. Rev. B 70 035211

    [36]

    Bolef D I, Melamed N T, Menes M 1960 J. Phys. Chem. Solids 17 143

  • [1]

    Enífquez J P, Mathew X 2003 Sol. Energy Mater. Sol. Cell 76 313

    [2]

    Li C X, Dang S H 2012 Acta Phys. Sin. 61 017202 (in Chinese) [李春霞, 党随虎 2012 物理学报 61 017202]

    [3]

    Sahay P P, Nath R K, Tewari S 2007 Cryst. Res. Technol. 42 275

    [4]

    Fernee M, Watt A, Warner J, Cooper S, Heckenberg N, Rubinsztein-Dunlop H 2003 Nanotechnology 14 991

    [5]

    Greenwood N N, Earnshaw A 1997 Chemistry of the Elements (2nd Ed.) (Oxford:Butterworth-Heinemann)

    [6]

    Zakharov O, Rubio A, Blasé X, Cohen M L, Louie S G 1994 Phys. Rev. B 50 10780

    [7]

    Xu Y N, Ching W Y 1993 Phys. Rev. B 48 4335

    [8]

    Weber M J 1986 Handbook of Laser Science and Technology (Vol. III) (Cleveland:CRC Press)

    [9]

    Ley L, Pollak R A, Mcfeely F R, Kowalczyk S P, Shirley D A 1974 Phys. Rev. B 9 600

    [10]

    Wei S, Zhang S B 2000 Phys. Rev. B 62 6944

    [11]

    Li C X 2007 J. At. Mol. Phys. 4 1060 (in Chinese) [李春霞 2007 原子与分子物理学报 4 1060]

    [12]

    Ni L H, Liu Y, Song C L, Xu G, Han G R 2008 Rare Metal Materials and Engineering 37 623 (in Chinese) [倪利红, 刘涌, 宋晨路, 徐刚, 韩高荣 2008 稀有金属材料与工程 37 623]

    [13]

    Tan J J, Li Y, Ji G F 2011 Acat Phys. Polonica A 120 501

    [14]

    Osugi J, Shimizu K, Nakamura T, Onodera A 1966 Rev. Phys. Chem. Jpn. 36 65

    [15]

    Edwards A L, Slykhouse T E, Drickamer H G 1959 J. Phys. Chem. Solids 11 140

    [16]

    Edwards A L, Drickamer H G 1961 Phys. Rev. 122 1149

    [17]

    Benkhettou N, Rached D, Soudini B, Driz M 2004 Phys. Status Solidi B 241 101

    [18]

    Corll J A 1964 J. Appl. Phys. 35 3032

    [19]

    Payne M C, Teter M P, Allen D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [20]

    Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895

    [21]

    Hamann D R, Schluter M, Chiang C 1979 Phys. Rev. Lett. 43 1494

    [22]

    Bachelet G B, Hamann D R, Schluter M 1982 Phys. Rev. B 26 4199

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413

    [27]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [28]

    Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116

    [29]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406

    [30]

    Fast L, Wills J M, Johansson B, Eriksson O 1995 Phys. Rev. B 51 17431

    [31]

    Sin'ko G V, Smirnow N A 2002 J. Phys. Condens. Matter 14 6989

    [32]

    Suzuki T, Yagi T, Akimoto S, Kawamura T, Toyoda S, Endo S 1983 J. Appl. Phys. 54 748

    [33]

    Madelung E O, Schölz M, Weiss H, Landolt-Börnsten 1982 Numerical Data and Tunctional Relationship in Science and Technology (Vol. 17) (Berlin:Springer)

    [34]

    Yeh C Y, Lu Z W, Froyen S, Zunger A 1992 Phys. Rev. B 46 10086

    [35]

    Wright K, Gale J D 2004 Phys. Rev. B 70 035211

    [36]

    Bolef D I, Melamed N T, Menes M 1960 J. Phys. Chem. Solids 17 143

  • [1] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究. 物理学报, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [2] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [3] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [4] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [5] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [6] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究. 物理学报, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [7] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [8] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [9] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [10] 余本海, 陈东. α-, β-和γ-Si3N4 高压下的电子结构和相变: 第一性原理研究 . 物理学报, 2012, 61(19): 197102. doi: 10.7498/aps.61.197102
    [11] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究. 物理学报, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [12] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究. 物理学报, 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [13] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算. 物理学报, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [14] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算. 物理学报, 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [15] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算. 物理学报, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [16] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究. 物理学报, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [17] 侯榆青, 张小东, 姜振益. 第一性原理计算MAlH4(M=Na, K)的结构和弹性性质. 物理学报, 2010, 59(8): 5667-5671. doi: 10.7498/aps.59.5667
    [18] 王海燕, 崔红保, 历长云, 李旭升, 王狂飞. AlAs相变及热动力学性质的第一性原理研究. 物理学报, 2009, 58(8): 5598-5603. doi: 10.7498/aps.58.5598
    [19] 许红斌, 王渊旭. 过渡金属Tc及其氮化物TcN,TcN2,TcN3与TcN4低压缩性的第一性原理计算研究. 物理学报, 2009, 58(8): 5645-5652. doi: 10.7498/aps.58.5645
    [20] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
计量
  • 文章访问数:  3927
  • PDF下载量:  1595
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-10
  • 修回日期:  2012-12-27
  • 刊出日期:  2013-04-05

第一性原理研究硫化镉高压相变及其电子结构与弹性性质

  • 1. 重庆大学物理学院, 重庆 401331;
  • 2. 重庆交通大学理学院, 重庆 400074

摘要: 采用第一性原理研究了CdS的六方纤锌矿(WZ), 立方闪锌矿(ZB) 和岩盐矿(RS)相在高压条件下的相稳定性、 相变点、电子结构以及弹性性能.WZ相与RS 相可以在相应的压强范围内稳定存在, 而ZB相不能稳定存在.压强大于2.18 GPa时, WZ相向RS相发生金属化相变.WZ相中S原子电负性大于Cd, 且电负性差值小于1.7, CdS的WZ相为共价晶体.高压作用下, S原子半径被强烈压缩, 有效核电荷增加, 对层外电子吸引能力提高, 电负性急剧增大, 导致S与Cd的电负性差值大于1.7, CdS的RS相以离子晶体存在. WZ相的C44随压强增加呈下降趋势, 导致WZ相力学不稳定, 并向RS相转变.当压强大于2.18 GPa时, RS相C11, C12随压强增加而增大, 并且C44保持稳定, 说明RS相具有良好的高压稳定性与力学性能.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回