搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究钒、钨固溶对碳化钼力学性能的影响

杨正罡 豆尔康 杨永 李天瑞 章小峰 王昭东

引用本文:
Citation:

第一性原理研究钒、钨固溶对碳化钼力学性能的影响

杨正罡, 豆尔康, 杨永, 李天瑞, 章小峰, 王昭东

First-principles studies of influence of V or W doping on mechanical properties of Mo2C

YANG Zhenggang, DOU Erkang, YANG Yong, LI Tianrui, ZHANG Xiaofeng, WANG Zhaodong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 二次硬化型超高强度钢广泛应用于航空航天等领域, 弥散析出的纳米级M2C是二次硬化钢的主要强化因素. Mo是形成二次强化相Mo2C的主要元素, 可与Cr, V, W等形成复合型M2C. 为探究V, W的掺杂对Mo2C的影响, 本文基于第一性原理研究了掺杂体系的电子结构和力学性质. 研究结果表明, 掺杂V降低形成焓, 使结构更为稳定, 而掺杂W使稳定性下降. 掺杂V使韧性下降, 硬度增加. 掺杂W改善强韧性, 硬度降低更缓慢. 与C—Mo键相比, C—V键共价性弱, C—W键共价性强.
    Secondary hardening ultra-high-strength steel is widely utilized in aerospace and other advanced engineering, with the nanoscale M2C precipitates serving as the primary strengthening factor. Mo plays a crucial role in the forming of Mo2C secondary hardening phase, which can form composite M2C precipitates with elements such as Cr, V, and W, thereby modifying the composition and properties of Mo2C. To investigate the effects of V and W doping on Mo2C, first-principles calculations are used to analyze the formation enthalpy, electronic structure, and mechanical properties of the doped systems. The CASTEP module is utilized in this study, with the Perdew-Burke-Ernzerhof (PBE) functional adopted in the generalized gradient approximation (GGA) framework. The results indicate that V doping reduces the lattice parameters and the formation enthalpy, thereby enhancing structural stability. In contrast, W doping increases the lattice parameters and lowers the formation enthalpy but leads the structural stability to decrease. In terms of mechanical properties, V doping reduces toughness while increasing hardness, whereas W doping improves the strength-toughness balance by mitigating the rate of hardness reduction. Covalent bonds are formed within the system, with V and W doping changing their characteristics: compared with the C—Mo bond, the C—V bond exhibits weaker covalency, while the C—W bond displays stronger covalency. Additionally, V doping enhances the stability of Mo—C bonds, whereas W doping reduces their stability. Charge population analysis reveals that metal atoms (Mo, V, and W) act as electron donors, while carbon atoms act as electron acceptors.
  • 图 1  晶体结构以及超胞示意图 (a) Mo2C; (b) Mo8C4; (c) Mo7VC4; (d) Mo6V2C4; (e) Mo7WC4; (f) Mo6W2C4

    Fig. 1.  Schematic diagram of crystal structure and the supercell: (a) Mo2C; (b) Mo8C4; (c) Mo7VC4; (d) Mo6V2C4; (e) Mo7WC4; (f) Mo6W2C4.

    图 2  不同构型的弹性常数 (a) 弹性模量(B, G, E); (b) 模量比(G/B)和泊松比(ν)

    Fig. 2.  Elastic constants of different configurations: (a) Elastic moduli (B, G, E); (b) modulus ratio (G/B) and Poisson's ratio (ν).

    图 3  五种构型的态密度及各原子分波态密度图 (a) Mo8C4; (b) Mo7VC4; (c) Mo6V2C4; (d) Mo7WC4; (e) Mo6W2C4. (f) 四种掺杂构型的总态密度图

    Fig. 3.  Density of states for five configurations and the partial density of states for each atom: (a) Mo8C4; (b) Mo7VC4; (c) Mo6V2C4; (d) Mo7WC4; (e) Mo6W2C4. (f) Total density of states for four doped configurations.

    图 4  不同构型的态密度图 (a) (Mo, V)8C4; (b) (Mo, W)8C4

    Fig. 4.  Density of states for different configurations: (a) (Mo, V)8C4; (b) (Mo, W)8C4.

    图 5  未掺杂构型 (a) 差分片段; (b) 差分电荷密度图

    Fig. 5.  Undoped configuration: (a) Differential fragment; (b) differential charge density map.

    图 6  差分电荷密度图 (a) Mo7VC4; (b) Mo6V2C4; (c) Mo7WC4; (d) Mo6W2C4

    Fig. 6.  Differential charge density maps: (a) Mo7VC4; (b) Mo6V2C4; (c) Mo7WC4; (d) Mo6W2C4.

    表 1  V, W掺杂前后的晶格参数a, b, c(单位Å), V3)以及α, β, γ

    Table 1.  Lattice parameters a, b, c (in Å), volume V (in ų), and angles α, β, γ before and after doping with V and W.

    ConfigurationabcVαβγVolume expansion rate/%
    Mo2C3.0593.0594.66537.79490.0090.00120.00
    (Mo4C2)[12]3.0563.0569.33175.476
    (Mo2C)[13]3.0543.0544.65237.58
    (Mo2C)[15]3.0513.0514.62437.3114
    Mo8C46.1083.0549.346150.99690.0689.98120.00
    Mo7VC46.0833.0419.282148.73790.0490.02119.98–1.50%
    Mo6V2C46.0513.0269.215146.20189.8490.34119.96–3.18%
    Mo7WC46.1093.0559.350151.13990.0789.96119.990.09%
    Mo6W2C46.1123.0549.355151.27290.0989.97119.980.18%
    (V2C)[20]3.0453.0454.40935.4
    (V2C)[21]2.89
    (W2C)[20]3.193.194.62640.77
    (W2C)[20]3.0603.0604.703
    下载: 导出CSV

    表 2  不同构型的形成焓

    Table 2.  Enthalpy of formation for different configurations.

    Configuration ΔH/(eV·atom–1)
    Mo8C4 –0.131
    (Mo2C)[13] –0.113
    Mo7VC4 –0.192
    Mo6V2C4 –0.264
    Mo7WC4 –0.121
    Mo6W2C4 –0.111
    下载: 导出CSV

    表 3  不同构型的单晶弹性常数

    Table 3.  Single crystal elastic constants of different configurations.

    ConfigurationC11/GPaC12/GPaC13/GPaC33/GPaC44/GPaC66/GPa
    Mo8C4475.26119.88180.55451.77137.69178.17
    Mo7VC4481.10117.69177.65466.54134.82178.91
    Mo6V2C4473.96119.00166.23461.58141.35176.42
    Mo7WC4478.11125.91187.67459.93137.32177.95
    Mo6W2C4483.65131.41196.03468.71137.92178.09
    下载: 导出CSV

    表 4  不同构型的维氏硬度HV, Hardness和硬度H

    Table 4.  Hardness of different configurations.

    ConfigurationHV/GPaHardness/GPaH/GPa
    Mo8C416.6416.5742.79
    Mo7VC416.8417.4643.00
    Mo6V2C418.1218.1341.71
    Mo7WC415.9816.0043.92
    Mo6W2C415.4315.5945.25
    下载: 导出CSV

    表 5  不同构型的弹性各向异性指数(AU, AB, AG)

    Table 5.  Elastic anisotropy indices (AU, AB, AG) of different configurations.

    ConfigurationBV/GPaGV/GPaBR/GPaGR/GPaAUAB/%AG/%
    Mo8C4262.69152.04262.30149.300.09310.07530.9073
    Mo7VC4263.86153.98263.30149.990.13520.10591.3137
    Mo6V2C4256.93155.90256.62153.640.07500.06170.7319
    Mo7WC4268.74151.14268.20148.900.07730.10170.7471
    Mo6W2C4275.88151.23275.17148.980.07790.12950.7472
    下载: 导出CSV

    表 6  不同构型的键布居

    Table 6.  Different configurations of bond population.

    Configuration Bond Number Population Length/Å
    Mo8C4
    C—Mo80.672.1141
    C—Mo80.282.1143
    C—Mo[15]2.118[15]
    Mo7VC4C—Mo70.692.1116
    C—Mo70.282.1131
    C4—V110.172.0367
    C3—V110.602.0380
    Mo6V2C4C—Mo60.732.1057
    C—Mo60.282.1076
    C—V20.592.0420
    C—V20.172.0675
    Mo7WC4C—Mo70.662.1152
    C—Mo70.272.1164
    C4—W110.342.1173
    C3—W110.792.1233
    Mo6W2C4C—Mo60.652.1162
    C—Mo60.262.1187
    C—W20.312.1210
    C—W20.762.1238
    下载: 导出CSV

    表 7  Mo8C4的电荷布居

    Table 7.  Charge distribution of Mo8C4.

    ConfigurationAtomspdfTotal electron/eMuliken charge/e
    Mo8C4Mo2.206.644.860.0013.700.30
    C1.443.160.000.004.60–0.60
    下载: 导出CSV

    表 9  W掺杂Mo8C4的电荷布居

    Table 9.  Charge distribution of W-doped Mo8C4.

    ConfigurationAtomTotal electron/eMuliken charge/eConfigurationAtomTotal electron/eMuliken charge/e
    Mo7WC4Mo113.700.29Mo6W2C4Mo113.700.30
    Mo213.700.31Mo213.700.30
    Mo313.700.29Mo313.720.29
    Mo413.700.30Mo413.720.29
    Mo513.700.30Mo513.660.33
    Mo613.680.32Mo613.660.33
    Mo713.660.33W127.700.29
    W127.840.27W227.700.29
    C14.60–0.60C14.60–0.60
    C24.60–0.60C24.60–0.60
    C34.62–0.61C34.62–0.62
    C44.60–0.61C44.62–0.62
    下载: 导出CSV

    表 8  V掺杂Mo8C4的电荷布居

    Table 8.  Charge distribution of V-doped Mo8C4.

    ConfigurationAtomTotal electron/eMuliken charge/eConfigurationAtomTotal electron/eMuliken charge/e
    Mo7VC4Mo113.760.24Mo6V2C4Mo113.800.20
    Mo213.700.30Mo213.800.20
    Mo313.760.24Mo313.800.21
    Mo413.720.29Mo413.800.20
    Mo513.740.26Mo513.800.21
    Mo613.780.22Mo613.800.20
    Mo713.760.25V112.380.62
    V112.380.63V212.380.62
    C14.60–0.60C14.62–0.61
    C24.60–0.60C24.62–0.61
    C34.62–0.62C34.62–0.62
    C44.62–0.61C44.62–0.61
    下载: 导出CSV
  • [1]

    Dahl J M, Novotny P M 1999 Adv. Mater. Processes. 155 23

    [2]

    Speich G R, Leslie W C 1972 Metall. Trans. 3 1043Google Scholar

    [3]

    Garrison W M, Maloney J L 2005 Mater. Sci. Eng. , A 403 299Google Scholar

    [4]

    吴迪 2016 博士学位论文 (秦皇岛: 燕山大学)

    Wu D 2016 Ph. D. Dissertation (Qinhuangdao: Yanshan University

    [5]

    李阿妮, 厉勇, 王春旭, 刘宪民 2007 钢铁 42 60

    Li A N, Li Y, Wang C X, Liu X M 2007 Iron Steel 42 60

    [6]

    王春旭, 张鹏杰, 高远航, 厉勇, 韩顺, 刘少尊 2020 金属热处理 45 7

    Wang C X, Zhang P J, Gao Y H, Li Y, Han S, Liu S Z 2020 Heat Treat. Met. 45 7

    [7]

    Kwon H 1991 Metall. Trans. A 22 1119Google Scholar

    [8]

    Kwon H, Lee K B, Yang H R, Lee J B, Kim Y S 1997 Metall. Mater. Trans. A 28 775Google Scholar

    [9]

    Lee K B, Yang H R, Kwon H 2001 Metall. Mater. Trans. A 32 1862Google Scholar

    [10]

    Lee K B, Yang H R, Kwon H 2001 Metall. Mater. Trans. A 32 1659Google Scholar

    [11]

    Speich G R, Dabkowski D S, Porter L F 1973 Metall. Trans. 4 303Google Scholar

    [12]

    Liu X T, Zhou X L, Yang M S 2023 J. Mater. Sci. Mater. Electron. 34 961Google Scholar

    [13]

    Liu H L, Zhu J C, Lai Z H, Zhao R D, He D 2009 Scr. Mater. 60 949Google Scholar

    [14]

    Wang X R, Yan M F 2009 J. Wuhan Univ. Technol. Mater. Sci. Ed. 24 37

    [15]

    Wang X R, Yan M F, Chen H T 2009 J. Mater. Sci. Technol. 25 419Google Scholar

    [16]

    Liu Y Z, Jiang Y H, Zhou R, Liu X F, Feng J 2015 Ceram. Int. 41 5239Google Scholar

    [17]

    Vanderbilt D 1990 Phys. Rev. B. 41 7892Google Scholar

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [19]

    Guo J, Feng Y L, Tang C, Wang L, Qing X L, Yang Q X, Ren X J 2022 Materials 15 4719Google Scholar

    [20]

    Abderrahim F Z, Faraoun H I, Ouahrani T 2012 Physica B 407 3833Google Scholar

    [21]

    Luo Y, Cheng C, Chen H J, Liu K, Zhou X L 2019 J. Phys. Condens. Matter 31 405703Google Scholar

    [22]

    Peng M J, Wang R F, Wu Y J, Yang A C, Duan Y H 2022 Vacuum 196 110715Google Scholar

    [23]

    Zhao R D, Wu F F, Liu X, Zhu J C, Zhao Z F 2016 J. Alloys Compd. 681 283Google Scholar

    [24]

    Wu M M, Wen L, Tang B Y, Peng L M, Ding W J 2010 J. Alloys Compd. 506 412Google Scholar

    [25]

    Jang J H, Lee C H, Heo Y U, Suh D W 2012 Acta Mater. 60 208Google Scholar

    [26]

    Yan M, Zhang H, Gong C, Zhang M, Gao Q 2025 J. Phys. Chem. Solids 196 112374Google Scholar

    [27]

    Boucetta S, Zegrar F 2013 J. Magnes. Alloys 1 128Google Scholar

    [28]

    Gao X P, Jiang Y H, Zhou R, Feng J 2014 J. Alloys Compd. 587 819Google Scholar

    [29]

    李士明, 张启富, 邱肖盼, 张子月, 仲海峰 2022 材料保护 55 9

    Li S M, Zhang Q F, Qiu X P, Zhang Z Y, Zhong H F 2022 Mater. Prot. 55 9

    [30]

    Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275Google Scholar

    [31]

    Tian Y J, Xu B, Zhao Z S 2012 Int. J. Refract. Met. Hard Mater. 33 93Google Scholar

    [32]

    Teter DM 1998 MRS Bull. 23 22

    [33]

    Haines J, Leger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1Google Scholar

    [34]

    卢彩彬, 李新梅 2021 科学技术与工程 21 10646Google Scholar

    Lu C B, Li X M 2021 Sci. Techno. Eng. 21 10646Google Scholar

    [35]

    Li Y F, Gao Y M, Fan Z J, Xiao B, Yue Q W, Min T, Ma S Q 2010 Phys. B: Condens. Matter. 405 1011Google Scholar

  • [1] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20182030
    [2] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190664
    [3] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, doi: 10.7498/aps.67.20172356
    [4] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, doi: 10.7498/aps.66.057102
    [5] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, doi: 10.7498/aps.65.126102
    [6] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.63.243102
    [7] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.63.184208
    [8] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, doi: 10.7498/aps.63.186401
    [9] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, doi: 10.7498/aps.62.247102
    [10] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.62.046201
    [11] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.107402
    [12] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, doi: 10.7498/aps.62.087104
    [13] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.193102
    [14] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.046301
    [15] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质. 物理学报, doi: 10.7498/aps.60.087105
    [16] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究. 物理学报, doi: 10.7498/aps.60.036301
    [17] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算. 物理学报, doi: 10.7498/aps.60.014207
    [18] 侯榆青, 张小东, 姜振益. 第一性原理计算MAlH4(M=Na, K)的结构和弹性性质. 物理学报, doi: 10.7498/aps.59.5667
    [19] 许红斌, 王渊旭. 过渡金属Tc及其氮化物TcN,TcN2,TcN3与TcN4低压缩性的第一性原理计算研究. 物理学报, doi: 10.7498/aps.58.5645
    [20] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.57.7145
计量
  • 文章访问数:  319
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-10
  • 修回日期:  2025-02-12
  • 上网日期:  2025-03-20

/

返回文章
返回