搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质

余本海 刘墨林 陈东

引用本文:
Citation:

第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质

余本海, 刘墨林, 陈东

First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs

Yu Ben-Hai, Liu Mo-Lin, Chen Dong
PDF
导出引用
  • 在第一性原理框架下,采用赝势平面波方法研究了三种Mg2Si同质异相体的晶胞结构、电子结构和弹性性质随压强的变化关系.研究发现,反萤石结构Mg2Si、反氯铅矿结构Mg2Si和Ni2In型Mg2Si分别在压强为07 GPa,7.520.2 GPa和21.940 GPa范围内能够保持结构稳定.计算获得了不同压强下Mg2Si的弹性常数、体模量、剪切模量、杨氏模量、泊松比和各向异
    The structural and the elastic properties of the Mg2Si polymorphs are calculated. The calculations are performed by using the plane-wave pseudo-potential method within the framework of first principles. The anti-fluorite structure, the anti-cotunnite structure and the Ni2In-type structure of Mg2Si can retain their mechanical stability in the pressure intervals 07 GPa,7.520.2 GPa and 21.940 GPa, separately. The relationships between pressure and the elastic moduli (elastic constant, bulk modulus, shear modulus, Youngs modulus, Poisson ratio and anisotropy factor) are discussed. The electron density distribution, the density of states, the bond length and the Mulliken population of these polymorphs are systemically investigated. Our results show that the anti-fluorite Mg2Si is a semiconductor and the other two polymorphs are metallic materials. The interaction between Mg 2p, 3s and Si 3p plays a dominant role in the stability of the Mg2Si polymorphs. The strongest interactions in the anti-fluorite Mg2Si and the Ni2In-type Mg2Si are Mg-Mg and Mg-Si interactions, respectively. Our results are concordant with the experimental data and the previous results.
    • 基金项目: 国家自然科学基金(批准号:11005088,11047186)和河南省基础与前沿技术研究计划(批准号:102300410241)资助的课题.
    [1]

    Li S B, Li X N, Dong C, Jiang X 2010 Acta Phys. Sin. 59 4267 (in Chinese) [李胜斌、李晓娜、董 闯、姜 辛 2010 物理学报 59 4267]

    [2]

    Saravanan R, Robert M C 2009 J. Alloys Compd. 479 26

    [3]
    [4]

    Li C, Wu Y, Li H, Liu X 2009 J. Alloys Compd. 477 212

    [5]
    [6]
    [7]

    Baleva M, Zlateva G, Atanassov A, Abrashev M, Goranova E 2005 Phys. Rev. B 72 115330

    [8]

    Xue W H, Yu Y, Zhao Y N, Han H L, Gao T 2009 Comput. Mater. Sci. 45 1025

    [9]
    [10]

    Voggenreiter H F, Homann R 1995 Adv. Mater. Technol. Monitor 2 10

    [11]
    [12]

    Tamura D, Nagai R, Sugimoto K, Udono H, Kikuma I, Tajima H, Ohsugi I J 2007 Thin Solid Films 515 8272

    [13]
    [14]
    [15]

    Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin V Y, Vedernikov M V 2006 Phys. Rev. B 74 045207

    [16]

    Tani J I, Kido H 2008 Intermetallics 16 418

    [17]
    [18]
    [19]

    Chen Q, Xie Q, Yan W J, Yang C H, Zhao F J 2008 Sci. China G 38 825 (in Chinese) [陈 茜、谢 泉、闫万珺、杨创华、赵凤娟 2008 中国科学G 38 825]

    [20]
    [21]

    Kunc K, Loa I, Syassen K 2008 Phys. Rev. B 77 94110

    [22]
    [23]

    Duan Y H, Sorescu D C 2009 Phys. Rev. B 79 014301

    [24]

    Lazicki A, Yoo C S, Evans W J, Pickett W E 2006 Phys. Rev. B 73 184120

    [25]
    [26]

    Kunc K, Loa I, Grzechnik A, Syassen K 2005 Phys. Stat. Sol. B 242 1857

    [27]
    [28]

    Cannon P, Conlin E T 1964 Science 145 487

    [29]
    [30]
    [31]

    Hao J, Zou B, Zhu P, Cao C, Li Y, Liu D, Wang K, Lei W, Cui Q, Zou G 2009 Solid State Commun. 149 689

    [32]
    [33]

    Liu N N, Song R B, Du D W 2009 Chin. Phys. B 18 1979

    [34]
    [35]

    Gerstein B C, Jelinek F J, Habenschuss M, Schickell W D, Mullaly J R, Chung P L 1967 J. Chem. Phys. 47 2109

    [36]
    [37]

    Tani J I, Kido H 2008 Comput. Mater. Sci. 42 531

    [38]
    [39]

    Wang H, Jin H, Chu W, Guo Y 2010 J. Alloys Compd. 499 68

    [40]

    Yu B, Chen D, Tang Q, Wang C, Shi D 2010 J. Phys. Chem. Solids 71 758

    [41]
    [42]
    [43]

    Yu F, Sun J X, Yang W, Tian R G, Ji G F 2010 Solid State Commun. 150 620

    [44]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502

    [45]
    [46]
    [47]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [48]
    [49]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [50]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [51]
    [52]
    [53]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [54]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [55]
    [56]
    [57]

    Jiang Y, Smith J R, Odette G R 2010 Acta Mater. 58 1536

    [58]
    [59]

    Ravindran P, Fast L, Korzhavyi P A, Johansson B, Wills J, Eriksson O 1998 J. Appl. Phys. 84 4891

    [60]
    [61]

    Hill R 1965 J. Mech. Phys. Sol. 13 213

    [62]
    [63]

    Conntable D, Thomas O 2009 Phys. Rev. B 79 094101

    [64]

    Kanoun M B, Goumri-Said S, Reshak A H, Merad A E 2010 Solid State Sci. 12 887

    [65]
    [66]
    [67]

    Madelung O, Landolt-Brnstein 1983 Numerical Data and Functional Relationships in Science and Technology (New Series, Group Ⅲ Vol. 17e) (Berlin: Springer-Verlag Press) pp 163, 432

    [68]
    [69]

    Baranek P, Schamps J, Noiret I 1997 J. Phys. Chem. B 101 9147

    [70]

    Baranek P, Schamps J 1999 J. Phys. Chem. B 103 2601

    [71]
    [72]
    [73]

    Testardil L R 1975 Rev. Mod. Phys. 47 637

    [74]

    Sin'ko G V, Smirnov N V 2002 J. Phys.: Condens. Matter 14 6989

    [75]
    [76]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [77]
    [78]

    Chung D H, Buessem W R 1968 Anisotropy in Single Crystal Refractory Compound (New York: Plenum)

    [79]
    [80]
    [81]

    Chen D, Chen J D, Zhao L H, Wang C L, Yu B H, Shi D H 2009 Chin. Phys. B 18 738

    [82]
    [83]

    Segall M D, Philip J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [84]
    [85]

    Zhou J J, Gao T, Zhang C Y, Zhang Y G 2007 Acta Phys. Sin. 56 2311 (in Chinese) [周晶晶、高 涛、张传瑜、张云光 2007 物理学报 56 2311]

    [86]
    [87]

    Kalarasse F, Bennecer B 2008 J. Phys. Chem. Solids 69 1775

  • [1]

    Li S B, Li X N, Dong C, Jiang X 2010 Acta Phys. Sin. 59 4267 (in Chinese) [李胜斌、李晓娜、董 闯、姜 辛 2010 物理学报 59 4267]

    [2]

    Saravanan R, Robert M C 2009 J. Alloys Compd. 479 26

    [3]
    [4]

    Li C, Wu Y, Li H, Liu X 2009 J. Alloys Compd. 477 212

    [5]
    [6]
    [7]

    Baleva M, Zlateva G, Atanassov A, Abrashev M, Goranova E 2005 Phys. Rev. B 72 115330

    [8]

    Xue W H, Yu Y, Zhao Y N, Han H L, Gao T 2009 Comput. Mater. Sci. 45 1025

    [9]
    [10]

    Voggenreiter H F, Homann R 1995 Adv. Mater. Technol. Monitor 2 10

    [11]
    [12]

    Tamura D, Nagai R, Sugimoto K, Udono H, Kikuma I, Tajima H, Ohsugi I J 2007 Thin Solid Films 515 8272

    [13]
    [14]
    [15]

    Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin V Y, Vedernikov M V 2006 Phys. Rev. B 74 045207

    [16]

    Tani J I, Kido H 2008 Intermetallics 16 418

    [17]
    [18]
    [19]

    Chen Q, Xie Q, Yan W J, Yang C H, Zhao F J 2008 Sci. China G 38 825 (in Chinese) [陈 茜、谢 泉、闫万珺、杨创华、赵凤娟 2008 中国科学G 38 825]

    [20]
    [21]

    Kunc K, Loa I, Syassen K 2008 Phys. Rev. B 77 94110

    [22]
    [23]

    Duan Y H, Sorescu D C 2009 Phys. Rev. B 79 014301

    [24]

    Lazicki A, Yoo C S, Evans W J, Pickett W E 2006 Phys. Rev. B 73 184120

    [25]
    [26]

    Kunc K, Loa I, Grzechnik A, Syassen K 2005 Phys. Stat. Sol. B 242 1857

    [27]
    [28]

    Cannon P, Conlin E T 1964 Science 145 487

    [29]
    [30]
    [31]

    Hao J, Zou B, Zhu P, Cao C, Li Y, Liu D, Wang K, Lei W, Cui Q, Zou G 2009 Solid State Commun. 149 689

    [32]
    [33]

    Liu N N, Song R B, Du D W 2009 Chin. Phys. B 18 1979

    [34]
    [35]

    Gerstein B C, Jelinek F J, Habenschuss M, Schickell W D, Mullaly J R, Chung P L 1967 J. Chem. Phys. 47 2109

    [36]
    [37]

    Tani J I, Kido H 2008 Comput. Mater. Sci. 42 531

    [38]
    [39]

    Wang H, Jin H, Chu W, Guo Y 2010 J. Alloys Compd. 499 68

    [40]

    Yu B, Chen D, Tang Q, Wang C, Shi D 2010 J. Phys. Chem. Solids 71 758

    [41]
    [42]
    [43]

    Yu F, Sun J X, Yang W, Tian R G, Ji G F 2010 Solid State Commun. 150 620

    [44]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502

    [45]
    [46]
    [47]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [48]
    [49]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [50]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [51]
    [52]
    [53]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [54]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [55]
    [56]
    [57]

    Jiang Y, Smith J R, Odette G R 2010 Acta Mater. 58 1536

    [58]
    [59]

    Ravindran P, Fast L, Korzhavyi P A, Johansson B, Wills J, Eriksson O 1998 J. Appl. Phys. 84 4891

    [60]
    [61]

    Hill R 1965 J. Mech. Phys. Sol. 13 213

    [62]
    [63]

    Conntable D, Thomas O 2009 Phys. Rev. B 79 094101

    [64]

    Kanoun M B, Goumri-Said S, Reshak A H, Merad A E 2010 Solid State Sci. 12 887

    [65]
    [66]
    [67]

    Madelung O, Landolt-Brnstein 1983 Numerical Data and Functional Relationships in Science and Technology (New Series, Group Ⅲ Vol. 17e) (Berlin: Springer-Verlag Press) pp 163, 432

    [68]
    [69]

    Baranek P, Schamps J, Noiret I 1997 J. Phys. Chem. B 101 9147

    [70]

    Baranek P, Schamps J 1999 J. Phys. Chem. B 103 2601

    [71]
    [72]
    [73]

    Testardil L R 1975 Rev. Mod. Phys. 47 637

    [74]

    Sin'ko G V, Smirnov N V 2002 J. Phys.: Condens. Matter 14 6989

    [75]
    [76]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [77]
    [78]

    Chung D H, Buessem W R 1968 Anisotropy in Single Crystal Refractory Compound (New York: Plenum)

    [79]
    [80]
    [81]

    Chen D, Chen J D, Zhao L H, Wang C L, Yu B H, Shi D H 2009 Chin. Phys. B 18 738

    [82]
    [83]

    Segall M D, Philip J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [84]
    [85]

    Zhou J J, Gao T, Zhang C Y, Zhang Y G 2007 Acta Phys. Sin. 56 2311 (in Chinese) [周晶晶、高 涛、张传瑜、张云光 2007 物理学报 56 2311]

    [86]
    [87]

    Kalarasse F, Bennecer B 2008 J. Phys. Chem. Solids 69 1775

  • [1] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [2] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [3] 邵栋元, 惠群, 李孝, 陈晶晶, 李春梅, 程南璞. Ca0.5Sr0.5TiO3弹性和热学性质的第一性原理研究. 物理学报, 2015, 64(20): 207102. doi: 10.7498/aps.64.207102
    [4] 翟东, 韦昭, 冯志芳, 邵晓红, 张平. 铜钨合金高温高压性质的第一性原理研究. 物理学报, 2014, 63(20): 206501. doi: 10.7498/aps.63.206501
    [5] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [6] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. Fe, S共掺杂SnO2材料第一性原理分析. 物理学报, 2012, 61(2): 023101. doi: 10.7498/aps.61.023101
    [7] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [8] 余本海, 陈东. α-, β-和γ-Si3N4 高压下的电子结构和相变: 第一性原理研究 . 物理学报, 2012, 61(19): 197102. doi: 10.7498/aps.61.197102
    [9] 苏锐, 龙瑶, 姜胜利, 何捷, 陈军. 外部压力下β相奥克托金晶体弹性性质变化的第一性原理研究. 物理学报, 2012, 61(20): 206201. doi: 10.7498/aps.61.206201
    [10] 赵荣达, 朱景川, 刘勇, 来忠红. FeAl(B2) 合金La, Ac, Sc 和 Y 元素微合金化的第一性原理研究. 物理学报, 2012, 61(13): 137102. doi: 10.7498/aps.61.137102
    [11] 逯瑶, 王培吉, 张昌文, 蒋雷, 张国莲, 宋朋. 第一性原理研究In,N共掺杂SnO2材料的光电性质. 物理学报, 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [12] 蒋雷, 王培吉, 张昌文, 冯现徉, 逯瑶, 张国莲. 超晶格SnO2掺Cr的电子结构和光学性质的研究. 物理学报, 2011, 60(9): 093101. doi: 10.7498/aps.60.093101
    [13] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [14] 范开敏, 杨莉, 彭述明, 龙兴贵, 吴仲成, 祖小涛. 第一性原理计算α-ScDx(D=H,He)的弹性常数. 物理学报, 2011, 60(7): 076201. doi: 10.7498/aps.60.076201
    [15] 于峰, 王培吉, 张昌文. N掺杂SnO2材料光电性质的第一性原理研究. 物理学报, 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
    [16] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [17] 李晓凤, 姬广富, 彭卫民, 申筱濛, 赵峰. 高压下固态Kr弹性性质、电子结构和光学性质的第一性原理计算. 物理学报, 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [18] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [19] 周晶晶, 高 涛, 张传瑜, 张云光. Al的微观组态与LaNi3.75Al1.25的结构和弹性第一性原理研究. 物理学报, 2007, 56(4): 2311-2317. doi: 10.7498/aps.56.2311
    [20] 张金奎, 邓胜华, 金 慧, 刘悦林. ZnO电子结构和p型传导特性的第一性原理研究. 物理学报, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
计量
  • 文章访问数:  3986
  • PDF下载量:  735
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-24
  • 修回日期:  2011-02-14
  • 刊出日期:  2011-04-05

第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质

  • 1. 信阳师范学院物理电子工程学院,信阳 464000
    基金项目: 国家自然科学基金(批准号:11005088,11047186)和河南省基础与前沿技术研究计划(批准号:102300410241)资助的课题.

摘要: 在第一性原理框架下,采用赝势平面波方法研究了三种Mg2Si同质异相体的晶胞结构、电子结构和弹性性质随压强的变化关系.研究发现,反萤石结构Mg2Si、反氯铅矿结构Mg2Si和Ni2In型Mg2Si分别在压强为07 GPa,7.520.2 GPa和21.940 GPa范围内能够保持结构稳定.计算获得了不同压强下Mg2Si的弹性常数、体模量、剪切模量、杨氏模量、泊松比和各向异

English Abstract

参考文献 (87)

目录

    /

    返回文章
    返回