搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孕镶金刚石基底Co原子嵌入深度对金刚石涂层膜基界面结合强度的影响

简小刚 张婷婷 唐文杰

引用本文:
Citation:

孕镶金刚石基底Co原子嵌入深度对金刚石涂层膜基界面结合强度的影响

简小刚, 张婷婷, 唐文杰

Influence of Co atom embedding depth in impregnated diamond substrate on bonding strength of diamond coating film substrate interface

JIAN Xiaogang, ZHANG Tingting, TANG Wenjie
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用第一性原理方法, 对孕镶金刚石基底表层Co原子金刚石涂层膜基界面结合作用进行仿真计算分析, 以探究基底中黏结相Co的嵌入深度对金刚石涂层膜基界面结合强度的影响. 计算结果表明, 膜基界面结合能随基底中Co嵌入深度的增大呈先降低后升高的趋势. 当Co原子排列位于第3层时, 涂层生长易出现明显的石墨结构, Co促金刚石石墨化作用最为显著, 膜基界面结合强度达到最小值. 分析结构及电荷发现, 此时在表面效应及Co—C键键长的共同作用下基底第2层C移至表层, 并由sp3杂化转变为sp2杂化, 且C的移动导致Co与周围C原子的作用空间增大、作用数量增多, 加之Co价层未配对电子较多, 易与周围多个碳原子发生电子轨道的混合与重排, 最终使得基底表面呈现为石墨结构. Co位于第5层时不再影响基底表面的稳定构型及膜基界面结合强度.
    Diamond coating has many excellent properties such as extreme hardness, high elastic modulus, high thermal conductivity, low friction coefficient, low thermal expansion coefficient, and good corrosion resistance. Those properties are close to natural diamond’s, thereby making the diamond coating an ideal new type of wear-resistant tool coating material. However, a large number of experiments have proved that during the deposition of diamond coating, the bonding phase cobalt on the surface of impregnated diamond substrate will generate a layer of graphite at the interface, which seriously weakens the adhesive strength between the substrate and the coating. To thoroughly solve this problem, it is necessary to investigate the microscopic process of graphitization caused by the Co element embedded on the substrate surface. Therefore, the first principle theory is adopted to simulate and analyze the interfacial adhesive strength of diamond coating when Co atom is embedded at different depths on the surface of impregnated diamond substrate, thereby exploring the mechanism of the influence of bonding phase Co element in the substrate on the diamond coating and the mechanism of Co promoting diamond graphitization. The calculation results show that the interfacial binding energy first decreases and then increases with the increase of Co embedding depth in the substrate. When Co atom is embedded in the third layer, obvious graphite structures are prone to appear at the interface, and Co promotes diamond graphitization most significantly, resulting in the minimum bonding strength between the film and substrate interface. The results of structure and charge indicate that under the influence of surface effect and Co—C bond length, the C atoms in the second layer of the substrate move to the first layer and the hybridization mode changes from sp3 to sp2. Meanwhile, this movement leads to an increase in the interaction space and quantity between Co atoms and the surrounding C atoms. In addition, there are many unpaired electrons in the Co valence layer, which can easily mix and rearrange electron orbitals with the surrounding C atoms, ultimately resulting in a graphite structure on the substrate surface. When Co atoms are embedded in the fifth layer, the stable configuration of the substrate surface and the interfacial adhesive strength are no longer affected.
  • 图 1  孕镶金刚石基底金刚石涂层膜基界面建模流程

    Fig. 1.  Interfacial modeling process between impregnated diamond substrate and diamond coating.

    图 2  Co原子嵌入不同深度的孕镶金刚石基底模型

    Fig. 2.  Impregnated diamond substrate models with Co atom doped in different depths.

    图 3  孕镶金刚石基底金刚石涂层膜基界面模型 (a) Co在第1层; (b) Co在第2层; (c) Co在第3层; (d) Co在第4层; (e) Co在第5层; (f)不含Co

    Fig. 3.  Interface model between impregnated diamond substrate and diamond coating: (a) Co atom doped in the first layer; (b) Co atom doped in the second layer; (c) Co atom doped in the third layer; (d) Co atom doped in the fourth layer; (e) Co atom doped in the fifth layer; (f) without Co atom.

    图 4  结构优化后的孕镶金刚石基底模型 (a) Co在第1层; (b) Co在第2层; (c) Co在第3层; (d) Co在第4层; (e) Co在第5层; (f)不含Co

    Fig. 4.  Impregnated diamond substrate model after structural optimization: (a) Co atom doped in the first layer; (b) Co atom doped in the second layer; (c) Co atom doped in the third layer; (d) Co atom doped in the fourth layer; (e) Co atom doped in the fifth layer; (f) no Co atom.

    图 5  Co在第3层的基底结构

    Fig. 5.  Substrate structure when Co is doped in the third layer.

    图 6  结构优化后的孕镶金刚石基底和金刚石涂层的界面模型 (a) Co在第1层; (b) Co在第2层; (c) Co在第3层; (d) Co在第4层; (e) Co在第5层; (f)不含Co

    Fig. 6.  Interface model between impregnated diamond substrate and diamond coating after structural optimization: (a) Co atom doped in the first layer; (b) Co atom doped in the second layer; (c) Co atom doped in the third layer; (d) Co atom doped in the fourth layer; (e) Co atom doped in the fifth layer; (f) no Co atom.

    图 7  基底差分电荷密度图 (a) Co在第1层; (b) Co在第2层; (c) Co在第3层; (d) Co在第4层; (e) Co在第5层

    Fig. 7.  Differential charge density of substrate: (a) Co atom doped in the first layer; (b) Co atom doped in the second layer; (c) Co atom doped in the third layer; (d) Co atom doped in the fourth layer; (e) Co atom doped in the fifth layer.

    图 8  基底中Co与成键C原子的部分态密度图 (a) Co在第1层; (b) Co在第2层; (c) Co在第3层; (d) Co在第4层; (e) Co在第5层    

    Fig. 8.  Partial density of states of Co and bonded C atoms in the substrate: (a) Co atom doped in the first layer; (b) Co atom doped in the second layer; (c) Co atom doped in the third layer; (d) Co atom doped in the fourth layer; (e) Co atom doped in the fifth layer.

    表 1  不同原子层数金刚石表面结构优化后的层间距变化

    Table 1.  Variation of layer spacing after structural optimization of diamond models with different numbers of atomic layers.

    原子层数/N层间距变化/%
    ${\varDelta _{12}}$${\varDelta _{23}}$${\varDelta _{34}}$${\varDelta _{45}}$${\varDelta _{56}}$${\varDelta _{67}}$
    3–10.852
    5–11.1424.606
    7–10.7164.643–0.429
    9–10.7084.643–0.7010.933
    11–10.7014.688–0.7020.8250.472
    13–10.7184.688–0.7040.8620.330–0.613
    下载: 导出CSV

    表 2  Co原子嵌入不同深度的孕镶金刚石基底/金刚石涂层界面结合能

    Table 2.  Interface binding energy of impregnated diamond substrates with Co atoms doped in different depths /diamond coating.

    基底中Co位置Eslab1/eVEslab2/eVEinterface/eVA2Wad/(J·m–2)
    表面第1层–10822.680–9874.157–20740.52856.90312.302
    表面第2层–10824.324–20739.00411.410
    表面第3层–10820.914–20725.5278.575
    表面第4层–10816.048–20735.41712.730
    表面第5层–10816.702–20738.24513.342
    不含Co–9879.266–19801.20613.454
    下载: 导出CSV

    表 3  Co位于第3层的原子布居数

    Table 3.  Atomic population when Co is doped in the third layer.

    Atom Muliken atomic populations Total electron/e Transfer charge/e
    s p d
    Co 0.05 –0.77 7.79 7.06 1.94
    C(1) 1.32 2.82 0.00 4.14 –0.14
    C(2) 1.19 2.91 0.00 4.10 –0.10
    C(3) 1.22 2.94 0.00 4.15 –0.15
    C(4) 1.18 3.00 0.00 4.17 –0.17
    C(5) 1.22 2.94 0.00 4.15 –0.15
    C(6) 1.18 2.91 0.00 4.10 –0.10
    C(7) 1.22 2.90 0.00 4.12 –0.12
    C(8) 1.17 3.04 0.00 4.20 –0.20
    C(9) 1.17 3.04 0.00 4.20 –0.20
    下载: 导出CSV

    表 4  Co位于第3层的化学键布居数

    Table 4.  Bond population when Co is doped in the third layer.

    Bond Population Length/Å
    Co—C(1) –0.22 1.94970
    Co—C(2) –0.22 2.02913
    Co—C(3) –0.31 1.93623
    Co—C(4) –0.19 1.98079
    Co—C(5) –0.13 1.93626
    Co—C(6) –0.22 2.02911
    Co—C(7) 0.41 2.07074
    Co—C(8) 0.34 1.88913
    Co—C(9) 0.34 1.88915
    下载: 导出CSV
  • [1]

    Yan B, He N, Chen N, Weigold M, Chen H W, Sun S C, Wu Y, Fu S Y, Li L, Abele E 2025 Int. J. Extrem. Manuf. 7 015106Google Scholar

    [2]

    Du Y F, Xie F M, Wang J, Xu B, Chen H Y, Yan B N, Wu Y J, Huang W F, Li H 2023 Materials 16 3640Google Scholar

    [3]

    Wheeler D W, Wood R J K 2024 Wear 556-557 205488Google Scholar

    [4]

    简小刚, 张允华 2015 物理学报 64 046701Google Scholar

    Jian X G, Zhang Y H 2015 Acta Phys. Sin. 64 046701Google Scholar

    [5]

    Wang X L, Wu X, Lu K, Ye J W 2025 Diam. Relat. Mater. 152 111886.Google Scholar

    [6]

    Liu X W, Zhang H, Lin G L, Wang Z G, Zhang J L, Shi H Y 2023 Vacuum 217 112562Google Scholar

    [7]

    Tian Q Q, Huang N, Yang B, Zhuang H, Wang C, Zhai Z F, Li G H, Jia X Y, Liu L S, Jiang X 2017 J. Mater. Sci. Technol. 33 1097Google Scholar

    [8]

    Li X J, He L L, Li Y S, Yang Q 2019 Surf. Coat. Technol. 360 20Google Scholar

    [9]

    Saiki Y, Bando T, Harigai T, Takikawa Hirofumi, Hattori T, Sugita H, Kawahara, N, Tanaka K 2023 Diam. Relat. Mater. 132 109643Google Scholar

    [10]

    Qiao Y, Nie S Y, Li W H, Liu E Z, Wang X C 2023 Appl. Surf. Sci. 633 157589Google Scholar

    [11]

    Sedov V, Martyanov A, Ashkinazi E, Tiazhelov I, Savin Se, Sovyk D, Mandal S, Fedorov S, Grigoriev S, Ralchenko V 2023 Surf. Interfaces 38 102861

    [12]

    简小刚, 陈军 2015 物理学报 64 216701Google Scholar

    Jian X G, Chen J 2015 Acta Phys. Sin. 64 216701Google Scholar

    [13]

    Sarangi S K, Chattopadhyay A, Chattopadhyay A K 2008 Appl. Surf. Sci. 254 3721Google Scholar

    [14]

    Hu J B, Jian X G 2022 Mod. Phys. Lett. B 36 2250086

    [15]

    范舒瑜, 匡同春, 林松盛, 代明江 2023 材料导报 37 28Google Scholar

    Fan S Y, Kuang T C, Lin S S, Dai M J 2023 Mater. Rep. 37 28Google Scholar

    [16]

    Donnet J B, Paulmier D, Oulanti H 2004 Carbon 42 2215Google Scholar

    [17]

    Lloret F, Soto B, Rouzbahani R, Gutiérrez M, Haenen K, Araujo D 2023 Diam. Relat. Mater. 133 109746Google Scholar

    [18]

    Zhu P, Zhang Q, Xia Y X, Ma Y F, Gou H S, Liang X, Wu G H 2024 Mater. Today Phys. 48 101563Google Scholar

    [19]

    Hu J B, Jian X G, Yang T, Peng X Y 2022 Diam. Relat. Mater. 123 108864Google Scholar

    [20]

    Bi K, Liu J, Dai Q X 2012 Appl. Surf. Sci. 258 4581Google Scholar

    [21]

    Pang X Z, Yang X Y, Yang J B, Zhao Y J, Pang M J 2021 Diam. Relat. Mater. 113 108297Google Scholar

    [22]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Chadi D J 1977 Phys. Rev. B 16 1746Google Scholar

    [25]

    Jin S S, You Z Y, Han P D, Jiang A X, Sun C L, Wang L B, Zhang T, Liu S L 2024 Comput. Mater. Sci. 244 113235Google Scholar

  • [1] 甄嘉鹏, 郭斯琳, 张丹萍, 巩仁峰, 向自强, 吕克洪, 邱静, 刘冠军. 金刚石烯基晶体管沟道解析模型与电流超敏特性. 物理学报, doi: 10.7498/aps.74.20250009
    [2] 朱奕衡, 朱志光, 陈成克, 蒋梅燕, 李晓, 鲁少华, 胡晓君. 基于石墨烯竖立片层常压相变制备纳米金刚石. 物理学报, doi: 10.7498/aps.73.20231064
    [3] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究. 物理学报, doi: 10.7498/aps.73.20240515
    [4] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, doi: 10.7498/aps.72.20221942
    [5] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真. 物理学报, doi: 10.7498/aps.71.20211981
    [6] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度. 物理学报, doi: 10.7498/aps.68.20190350
    [7] 简小刚, 张允华. 温度对金刚石涂层膜基界面力学性能的影响. 物理学报, doi: 10.7498/aps.64.046701
    [8] 简小刚, 陈军. Co元素对硬质合金基底金刚石涂层膜基界面结合强度的影响. 物理学报, doi: 10.7498/aps.64.216701
    [9] 王静, 刘贵昌, 李红玲, 侯保荣. 铜基类金刚石膜功能梯度材料作为散热材料的研究. 物理学报, doi: 10.7498/aps.61.058102
    [10] 王林军, 刘健敏, 苏青峰, 史伟民, 夏义本. 金刚石膜α粒子探测器的电学性能研究. 物理学报, doi: 10.7498/aps.55.2518
    [11] 欧阳晓平, 王 兰, 范如玉, 张忠兵, 王 伟, 吕反修, 唐伟忠, 陈广超. 金刚石膜探测器研制. 物理学报, doi: 10.7498/aps.55.2170
    [12] 李俊杰, 吴汉华, 龙北玉, 吕宪义, 胡超权, 金曾孙. N离子注入对金刚石膜场发射特性的影响. 物理学报, doi: 10.7498/aps.54.1447
    [13] 刘存业, 刘 畅. CVD金刚石膜的结构分析. 物理学报, doi: 10.7498/aps.52.1479
    [14] 杨仕娥, 姚宁, 王小平, 李会军, 马丙现, 秦广雍, 张兵临. Mo离子注入对金刚石涂层附着性能的影响. 物理学报, doi: 10.7498/aps.51.347
    [15] 孔春阳, 王万录, 廖克俊, 马勇, 王蜀霞, 方亮. p型半导体金刚石膜的磁阻效应. 物理学报, doi: 10.7498/aps.50.1616
    [16] 廖克俊, 王万录, 冯 斌. 负偏压热灯丝CVD金刚石膜核化和早期生长的研究. 物理学报, doi: 10.7498/aps.47.514
    [17] 廖克俊, 王万录. 直流等离子体CVD法合成的金刚石膜的断裂强度研究. 物理学报, doi: 10.7498/aps.43.1559
    [18] 高巧君, 林增栋. 在强碳化物形成元素衬底上生长金刚石薄膜的物理机制探索. 物理学报, doi: 10.7498/aps.41.798
    [19] 高巧君, 王胜强, 林汀, 胡毅飞, 林增栋. 金刚石和石墨单晶表面覆盖沉积铬的研究. 物理学报, doi: 10.7498/aps.39.121-2
    [20] 刘光照. 在熔融金属溶液中石墨在金刚石稳定区结晶的可能性. 物理学报, doi: 10.7498/aps.28.334
计量
  • 文章访问数:  264
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-06
  • 修回日期:  2025-02-27
  • 上网日期:  2025-03-21

/

返回文章
返回