搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究

刘东静 胡志亮 周福 王鹏博 王振东 李涛

引用本文:
Citation:

基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究

刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛

Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation

Liu Dong-Jing, Hu Zhi-Liang, Zhou Fu, Wang Peng-Bo, Wang Zhen-Dong, Li Tao
PDF
HTML
导出引用
  • 为解决氮化镓芯片散热问题, 采用非平衡分子动力学法, 研究工作温度、界面尺寸、缺陷率及缺陷类型对氮化镓/石墨烯/金刚石异质界面热导的影响, 通过计算声子态密度和声子参与率, 分析界面热传导机理. 研究发现, 在100—500 K范围内, 温度升高使界面热导增大2.1倍, 重叠因子随温度增加而增加, 界面间声子耦合程度增强, 界面热导相应增大. 当氮化镓层数从10层增加到26层时, 界面热导降低75%, 分析认为是界面声子耦合程度下降导致. 另外, 添加5层石墨烯会导致界面热导降低74%, 分析认为是声子局域化程度加重造成; 当缺陷率从0增大到10%时, 金刚石碳原子缺陷使界面热导提高40%, 缺陷散射增加低频声子数量, 改善界面热传导; 但镓、氮和石墨烯碳原子缺陷会加重声子局域化程度, 均导致界面热导降低. 研究结果有助于提升氮化镓芯片散热性能, 同时对高可靠性氮化镓器件设计具有指导意义.
    Gallium nitride chips are widely used in high-frequency and high-power devices. However, thermal management is a serious challenge for gallium nitride devices. To improve thermal dissipation of gallium nitride devices, the nonequilibrium molecular dynamics method is employed to investigate the effects of operating temperature, interface size, defect density and defect types on the interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure. Furthermore, the phonon state densities and phonon participation ratios under various conditions are calculated to analyze the interface thermal conduction mechanism.The results indicate that interfacial thermal conductance increases with temperatures rising, highlighting the inherent self-regulating heat dissipation capabilities of heterogeneous. The interfacial thermal conductance of monolayer graphene structures is increased by 2.1 times as the temperature increases from 100 to 500 K. This is attributed to the overlap factor increasing with temperature rising, which enhances the phonon coupling between interfaces, leading the interfacial thermal conductance to increase.Additionally, in the study it is found that increasing the number of layers of both gallium nitride and graphene leads the interfacial thermal conductance to decrease. When the number of gallium nitride layers increases from 10 to 26, the interfacial thermal conductance decreases by 75%. The overlap factor diminishing with the layer number increasing is ascribed to the decreased match of phonon vibrations between interfaces, resulting in lower thermal transfer efficiency. Similarly, when the number of graphene layers increases from 1 to 5, the interfacial thermal conductance decreases by 74%. The increase in graphene layers leads the low-frequency phonons to decrease, consequently lowering the interfacial thermal conductance. Moreover, multilayer graphene enhances phonon localization, exacerbates the reduction in interfacial thermal conductance.It is found that introducing four types of vacancy defects can affect the interfacial thermal conductance. Diamond carbon atom defects lead its interfacial thermal conductance to increase, whereas defects in gallium, nitrogen, and graphene carbon atoms cause their interfacial thermal conductance to decrease. As the defect concentration increases from 0 to 10%, diamond carbon atom defects increase the interfacial thermal conductance by 40% due to defect scattering, which increases the number of low-frequency phonon modes and expands the channels for interfacial heat transfer, thus improving the interfacial thermal conductance. Defects in graphene intensify the degree of graphene phonon localization, consequently leading the interfacial thermal conductance to decrease. Gallium and nitrogen defects both intensify the phonon localization of gallium nitride, impeding phonon transport channels. Moreover, gallium defects induce more severe phonon localization than nitrogen defects, consequently leading to lower interfacial thermal conductance.This research provides the references for manufacturing highly reliable gallium nitride devices and the widespread use of gallium nitride heterostructures.
      通信作者: 刘东静, ldj168168@126.com
    • 基金项目: 广西制造系统与先进制造技术重点实验室主任基金(批准号: 19-050-44-002Z)、2024 年度广西高校中青年教师科研基础能力提升项目(批准号: 2024KY0203)、桂林电子科技大学研究生教育创新计划(批准号: 2024YCXS016)和2023年广西自治区级新工科研究与实践项目(批准号: XGK202309)资助的课题.
      Corresponding author: Liu Dong-Jing, ldj168168@126.com
    • Funds: Project supported by the Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, China (Grant No. 19-050-44-002Z), the 2024 Project on Enhancement of Basic Research Ability for Young and Middle-aged Teachers in Guangxi Universities, China (Grant No. 2024KY0203), the Innovation Project of Graduate Education of Guilin University of Electronic Science and Technology, China (Grant No. 2024YCXS016), and the 2023 Guangxi Autonomous Region New Engineering Research and Practice Project, China (Grant No. XGK202309).
    [1]

    刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红 2023 物理学报 72 098104Google Scholar

    Liu Q B, Yu C, Guo J C, Ma M Y, He Z Z, Zhou C J, Gao X D, Yu H, Feng Z H 2023 Acta Phys. Sin. 72 098104Google Scholar

    [2]

    贾鑫, 魏俊俊, 黄亚博, 邵思武, 孔月婵, 刘金龙, 陈良贤, 李成明, 叶海涛 2020 表面技术 49 111

    Jia X, Wei J J, Huang Y B, Shao S W, Kong Y C, Liu J L, Chen L X, Li C M, Ye H T 2020 Surf. Technol. 49 111

    [3]

    Wu Y J, Fang L, Xu Y 2019 npj Comput. Mater. 5 1Google Scholar

    [4]

    冯家驹, 范亚明, 房丹, 邓旭光, 于国浩, 魏志鹏, 张宝顺 2022 人工晶体学报 51 730Google Scholar

    Feng J J, Fan Y M, Fang D, Deng X G, Yu G H, Wei Z P, Zhang B S 2022 J. Synth. Cryst. 51 730Google Scholar

    [5]

    Francis D, Faili F, Babić D, Ejeckam F, Nurmikko A, Maris H 2010 Diamond Relat. Mater. 19 229Google Scholar

    [6]

    Cho J, Francis D, Altman D H, Asheghi M, Goodson K E 2017 J. Appl. Phys. 121 055105Google Scholar

    [7]

    Zhou Y, Anaya J, Pomeroy J, Sun H, Gu X, Xie A, Beam E, Becker M, Grotjohn T A, Lee C, Kuball M 2017 ACS Appl. Mater. Interfaces 9 34416Google Scholar

    [8]

    Huang X, Guo Z 2021 Int. J. Heat Mass Transfer 178 121613Google Scholar

    [9]

    Mu F, Xu B, Wang X, et al. 2022 J. Alloys Compd. 905 164076Google Scholar

    [10]

    Tao L, Theruvakkattil Sreenivasan S, Shahsavari R 2017 ACS Appl. Mater. Interfaces 9 989Google Scholar

    [11]

    Jia X, Huang L, Sun M, Zhao X, Wei J, Li C 2022 Coatings 12 672Google Scholar

    [12]

    Qi Z, Shen W, Li R, Sun X, Li L, Wang Q, Wu G, Liang K 2023 Appl. Surf. Sci. 615 156419Google Scholar

    [13]

    Middleton C, Chandrasekar H, Singh M, et al. 2019 Appl. Phys. Express 12 024003Google Scholar

    [14]

    Wu L, Sun X, Gong F, Luo J, Yin C, Sun Z, Xiao R 2022 Nanomaterials 12 894Google Scholar

    [15]

    Liu F, Zou R, Hu N, Ning H, Yan C, Liu Y, Wu L, Mo F, Fu S 2019 Nanoscale 11 4067Google Scholar

    [16]

    Hu S, Ju S, Shao C, Guo J, Xu B, Ohnishi M, Shiomi J 2021 Mater. Today Phys. 16 100324Google Scholar

    [17]

    Hu M, Poulikakos D 2013 Int. J. Heat Mass Transfer 62 205Google Scholar

    [18]

    Mischke J, Pennings J, Weisenseel E, Kerger P, Rohwerder M, Mertin W, Bacher G 2020 2D Mater. 7 035019Google Scholar

    [19]

    Suntornwipat N, Aitkulova A, Djurberg V, Majdi S 2023 Thin Solid Films 770 139766Google Scholar

    [20]

    Shen B, Ji Z, Lin Q, Gong P, Xuan N, Chen S, Liu H, Huang Z, Xiao T, Sun Z 2022 Chem. Mater. 34 3941Google Scholar

    [21]

    Jiang M, Chen C, Wang P, Guo D, Han S, Li X, Lu S, Hu X 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2201451119Google Scholar

    [22]

    Li D, Zou W, Jiang W, Peng X, Song S, Qin Q H, Xue J M 2020 Ceram. Int. 46 10885Google Scholar

    [23]

    Badokas K, Kadys A, Mickevičius J, Ignatjev I, Skapas M, Stanionytė S, Radiunas E, Juška G, Malinauskas T 2021 J. Phys. D: Appl. Phys. 54 205103Google Scholar

    [24]

    Barbier C, Largeau L, Gogneau N, et al. 2023 Cryst. Growth Des. 23 6517Google Scholar

    [25]

    Sun H, Simon R, Pomeroy J, Francis D, Faili F, Twitchen D, Kuball M 2015 Appl. Phys. Lett. 106 111906Google Scholar

    [26]

    Wang J, Shen Y, Yang P 2023 Compos. Commun. 40 101616Google Scholar

    [27]

    Tang Y, Liu J K, Yu Z H, Sun L G, Zhu L L 2023 Chin. Phys. B 32 066502Google Scholar

    [28]

    Liu D 2020 Phys. Lett. A 384 126077Google Scholar

    [29]

    Ou B, Yan J, Wang Q, Lu L 2022 Molecules 27 905Google Scholar

    [30]

    Sang L X, Li Z K 2024 Acta Phys. Sin. 73 103105 [桑丽霞, 李志康 2024 物理学报 73 103105]Google Scholar

    Sang L X, Li Z K 2024 Acta Phys. Sin. 73 103105Google Scholar

    [31]

    刘东静, 周福, 陈帅阳, 胡志亮 2023 物理学报 72 157901Google Scholar

    Liu D J, Zhou F, Chen S Y, Hu Z L, 2023 Acta Phys. Sin. 72 157901Google Scholar

    [32]

    Qu G D, Deng Z Y, Guo W, et al. 2023 IEEE Trans. Compon. Packag. Manuf. Technol. 13 816Google Scholar

    [33]

    Wu B Y, Zhou M, Xu D J, Liu J J, Tang R J, Zhang P 2022 Surf. Interfaces 32 102119Google Scholar

    [34]

    Tang Y Q, Zhang Z, Li L, Guo J, Yang P 2022 Int. J. Therm. Sci. 171 107231Google Scholar

    [35]

    Wu X, Han Q 2021 ACS Appl. Mater. Interfaces 13 32564Google Scholar

    [36]

    Huang H, Zhong Y, Cai B, Wang J, Liu Z, Peng Q 2023 Surf. Interfaces 37 102736Google Scholar

    [37]

    Ma D, Zhang L 2020 J. Phys. Condens. Matter 32 425001Google Scholar

    [38]

    Danilchenko B A, Paszkiewicz T, Wolski S, JeŻowski A, Plackowski T 2006 Appl. Phys. Lett. 89 061901Google Scholar

    [39]

    刘东静, 王韶铭, 杨平 2021 物理学报 70 187302Google Scholar

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar

    [40]

    Yang N, Luo T, Esfarjani K, et al. 2015 J. Comput. Theor. Nanosci. 12 168Google Scholar

    [41]

    Liu Y, Qiu L, Liu J, Feng Y 2023 Int. J. Heat Mass Transfer 209 124123Google Scholar

    [42]

    Wei N, Zhou C, Li Z, Ou B, Zhao K, Yu P, Li S, Zhao J 2022 Mater. Today Commun. 30 103147Google Scholar

    [43]

    Li M, Zhou H, Zhang Y, Liao Y, Zhou H 2018 Carbon 130 295Google Scholar

    [44]

    Esfahani M N, Jabbari M, Xu Y, Soutis C 2021 Mater. Today Commun. 26 101856Google Scholar

    [45]

    Liu X, Zhang G, Zhang Y W 2016 Nano Lett. 16 4954Google Scholar

    [46]

    Wu K, Zhang L, Li F, et al. 2024 Carbon 223 119021Google Scholar

    [47]

    Loh G C, Teo E, Tay B K 2011 Diamond Relat. Mater. 20 1137Google Scholar

    [48]

    Yang B, Yang H, Li T, Yang J, Yang P 2021 Appl. Surf. Sci. 536 147828Google Scholar

    [49]

    Koh Y R, Bin Hoque M S, Ahmad H, et al. 2021 Phys. Rev. Mater. 5 104604Google Scholar

    [50]

    Li Y, Zhao Q, Liu Y, Huang M, Ouyang X P 2024 Phys. Scr. 99 025944Google Scholar

    [51]

    Liu Y, Qiu L, Wang Z, Li H, Feng Y 2024 Composites, Part A 178 108008Google Scholar

    [52]

    Wu S, Wang J, Xie H, Guo Z 2020 Energies 13 5851Google Scholar

    [53]

    Yang Y, Ma J, Yang J, Zhang Y 2022 ACS Appl. Mater. Interfaces 14 45742Google Scholar

    [54]

    Yang C, Wang J, Ma D, Li Z, He Z, Liu L, Fu Z, Yang J Y 2023 Int. J. Heat Mass Transfer 214 124433Google Scholar

  • 图 1  氮化镓(18层)/石墨烯/金刚石(18层)异质结构模型

    Fig. 1.  Interface model of gallium nitride (18 layers)/graphene/diamond (18 layers) heterostructure.

    图 2  (a) 热源、热汇能量累计; (b) 沿热流方向的温度分布

    Fig. 2.  (a) Accumulation of energy from heat source and heat sink; (b) temperature distribution along the direction of heat flow.

    图 3  温度对单层和三层石墨烯结构界面热导的影响

    Fig. 3.  Relationship between the interfacial thermal conductance and temperature for 1-layer graphene and 3-layer graphene structures.

    图 4  温度对单层石墨烯结构PDOS的影响 (a) 氮化镓; (b) 石墨烯; (c) 重叠因子

    Fig. 4.  PDOS diagrams of heterostructure with single-layer graphene under temperature change: (a) GaN; (b) graphene; (c) overlap factor.

    图 5  氮化镓/金刚石和石墨烯层数变化对界面热导的影响

    Fig. 5.  Relationship between interfacial thermal conductance and the variation in the number of layers of GaN/diamond and graphene.

    图 6  氮化镓/金刚石层数变化对(a) 氮化镓、(b) 石墨烯和(c) 金刚石PDOS的影响; (d) PDOS重叠因子

    Fig. 6.  (a) GaN, (b) graphene, and (c) diamond PDOS diagrams for varying layers in the GaN /diamond; (d) overlap factor.

    图 7  石墨烯层数变化对(a)氮化镓、(b) 石墨烯和(c) 金刚石PDOS的影响; (d) 石墨烯PPR

    Fig. 7.  (a) GaN, (b) graphene, and (c) diamond PDOS diagrams with varying numbers of graphene layers; (d) PPR diagram.

    图 8  缺陷率对界面热导的影响

    Fig. 8.  Relationship between interface thermal conductance and defect concentration.

    图 9  石墨烯缺陷对PDOS的影响 (a) 石墨烯PDOS; (b) 石墨烯PPR

    Fig. 9.  Influence of graphene defects on PDOS: (a) PDOS diagram of graphene; (b) PPR of graphene.

    图 10  金刚石缺陷对PDOS的影响 (a) 金刚石PDOS; (b) 重叠因子

    Fig. 10.  Influence of diamond defects on PDOS: (a) PDOS diagram of diamond; (b) overlap factor.

    图 11  镓原子缺陷对PDOS的影响 (a) 氮化镓PDOS; (b) 氮化镓PPR

    Fig. 11.  Influence of Ga defects on PDOS: (a) PDOS diagram of GaN; (b) PPR diagram of GaN.

    图 12  氮原子缺陷对PDOS的影响 (a) 氮化镓PDOS; (b) 氮化镓PPR; (c) 镓和氮的PPR对比

    Fig. 12.  Influence of N defects on PDOS: (a) PDOS diagram of GaN; (b) PPR diagram of GaN; (c) comparative PPR diagram of Ga and N.

    表 1  晶格参数

    Table 1.  Lattice parameters.

    方向氮化镓石墨烯金刚石
    x3.216292.460003.56679
    y5.570784.260843.56679
    z5.239663.56679
    下载: 导出CSV

    表 2  L-J势函数参数

    Table 2.  Lennard-Jones parameters.

    原子1 原子2 $ \varepsilon $/eV $ \sigma $/Å
    C C 0.00361 3.671
    C Ga 0.00905 3.668
    C N 0.00369 3.346
    下载: 导出CSV
  • [1]

    刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红 2023 物理学报 72 098104Google Scholar

    Liu Q B, Yu C, Guo J C, Ma M Y, He Z Z, Zhou C J, Gao X D, Yu H, Feng Z H 2023 Acta Phys. Sin. 72 098104Google Scholar

    [2]

    贾鑫, 魏俊俊, 黄亚博, 邵思武, 孔月婵, 刘金龙, 陈良贤, 李成明, 叶海涛 2020 表面技术 49 111

    Jia X, Wei J J, Huang Y B, Shao S W, Kong Y C, Liu J L, Chen L X, Li C M, Ye H T 2020 Surf. Technol. 49 111

    [3]

    Wu Y J, Fang L, Xu Y 2019 npj Comput. Mater. 5 1Google Scholar

    [4]

    冯家驹, 范亚明, 房丹, 邓旭光, 于国浩, 魏志鹏, 张宝顺 2022 人工晶体学报 51 730Google Scholar

    Feng J J, Fan Y M, Fang D, Deng X G, Yu G H, Wei Z P, Zhang B S 2022 J. Synth. Cryst. 51 730Google Scholar

    [5]

    Francis D, Faili F, Babić D, Ejeckam F, Nurmikko A, Maris H 2010 Diamond Relat. Mater. 19 229Google Scholar

    [6]

    Cho J, Francis D, Altman D H, Asheghi M, Goodson K E 2017 J. Appl. Phys. 121 055105Google Scholar

    [7]

    Zhou Y, Anaya J, Pomeroy J, Sun H, Gu X, Xie A, Beam E, Becker M, Grotjohn T A, Lee C, Kuball M 2017 ACS Appl. Mater. Interfaces 9 34416Google Scholar

    [8]

    Huang X, Guo Z 2021 Int. J. Heat Mass Transfer 178 121613Google Scholar

    [9]

    Mu F, Xu B, Wang X, et al. 2022 J. Alloys Compd. 905 164076Google Scholar

    [10]

    Tao L, Theruvakkattil Sreenivasan S, Shahsavari R 2017 ACS Appl. Mater. Interfaces 9 989Google Scholar

    [11]

    Jia X, Huang L, Sun M, Zhao X, Wei J, Li C 2022 Coatings 12 672Google Scholar

    [12]

    Qi Z, Shen W, Li R, Sun X, Li L, Wang Q, Wu G, Liang K 2023 Appl. Surf. Sci. 615 156419Google Scholar

    [13]

    Middleton C, Chandrasekar H, Singh M, et al. 2019 Appl. Phys. Express 12 024003Google Scholar

    [14]

    Wu L, Sun X, Gong F, Luo J, Yin C, Sun Z, Xiao R 2022 Nanomaterials 12 894Google Scholar

    [15]

    Liu F, Zou R, Hu N, Ning H, Yan C, Liu Y, Wu L, Mo F, Fu S 2019 Nanoscale 11 4067Google Scholar

    [16]

    Hu S, Ju S, Shao C, Guo J, Xu B, Ohnishi M, Shiomi J 2021 Mater. Today Phys. 16 100324Google Scholar

    [17]

    Hu M, Poulikakos D 2013 Int. J. Heat Mass Transfer 62 205Google Scholar

    [18]

    Mischke J, Pennings J, Weisenseel E, Kerger P, Rohwerder M, Mertin W, Bacher G 2020 2D Mater. 7 035019Google Scholar

    [19]

    Suntornwipat N, Aitkulova A, Djurberg V, Majdi S 2023 Thin Solid Films 770 139766Google Scholar

    [20]

    Shen B, Ji Z, Lin Q, Gong P, Xuan N, Chen S, Liu H, Huang Z, Xiao T, Sun Z 2022 Chem. Mater. 34 3941Google Scholar

    [21]

    Jiang M, Chen C, Wang P, Guo D, Han S, Li X, Lu S, Hu X 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2201451119Google Scholar

    [22]

    Li D, Zou W, Jiang W, Peng X, Song S, Qin Q H, Xue J M 2020 Ceram. Int. 46 10885Google Scholar

    [23]

    Badokas K, Kadys A, Mickevičius J, Ignatjev I, Skapas M, Stanionytė S, Radiunas E, Juška G, Malinauskas T 2021 J. Phys. D: Appl. Phys. 54 205103Google Scholar

    [24]

    Barbier C, Largeau L, Gogneau N, et al. 2023 Cryst. Growth Des. 23 6517Google Scholar

    [25]

    Sun H, Simon R, Pomeroy J, Francis D, Faili F, Twitchen D, Kuball M 2015 Appl. Phys. Lett. 106 111906Google Scholar

    [26]

    Wang J, Shen Y, Yang P 2023 Compos. Commun. 40 101616Google Scholar

    [27]

    Tang Y, Liu J K, Yu Z H, Sun L G, Zhu L L 2023 Chin. Phys. B 32 066502Google Scholar

    [28]

    Liu D 2020 Phys. Lett. A 384 126077Google Scholar

    [29]

    Ou B, Yan J, Wang Q, Lu L 2022 Molecules 27 905Google Scholar

    [30]

    Sang L X, Li Z K 2024 Acta Phys. Sin. 73 103105 [桑丽霞, 李志康 2024 物理学报 73 103105]Google Scholar

    Sang L X, Li Z K 2024 Acta Phys. Sin. 73 103105Google Scholar

    [31]

    刘东静, 周福, 陈帅阳, 胡志亮 2023 物理学报 72 157901Google Scholar

    Liu D J, Zhou F, Chen S Y, Hu Z L, 2023 Acta Phys. Sin. 72 157901Google Scholar

    [32]

    Qu G D, Deng Z Y, Guo W, et al. 2023 IEEE Trans. Compon. Packag. Manuf. Technol. 13 816Google Scholar

    [33]

    Wu B Y, Zhou M, Xu D J, Liu J J, Tang R J, Zhang P 2022 Surf. Interfaces 32 102119Google Scholar

    [34]

    Tang Y Q, Zhang Z, Li L, Guo J, Yang P 2022 Int. J. Therm. Sci. 171 107231Google Scholar

    [35]

    Wu X, Han Q 2021 ACS Appl. Mater. Interfaces 13 32564Google Scholar

    [36]

    Huang H, Zhong Y, Cai B, Wang J, Liu Z, Peng Q 2023 Surf. Interfaces 37 102736Google Scholar

    [37]

    Ma D, Zhang L 2020 J. Phys. Condens. Matter 32 425001Google Scholar

    [38]

    Danilchenko B A, Paszkiewicz T, Wolski S, JeŻowski A, Plackowski T 2006 Appl. Phys. Lett. 89 061901Google Scholar

    [39]

    刘东静, 王韶铭, 杨平 2021 物理学报 70 187302Google Scholar

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar

    [40]

    Yang N, Luo T, Esfarjani K, et al. 2015 J. Comput. Theor. Nanosci. 12 168Google Scholar

    [41]

    Liu Y, Qiu L, Liu J, Feng Y 2023 Int. J. Heat Mass Transfer 209 124123Google Scholar

    [42]

    Wei N, Zhou C, Li Z, Ou B, Zhao K, Yu P, Li S, Zhao J 2022 Mater. Today Commun. 30 103147Google Scholar

    [43]

    Li M, Zhou H, Zhang Y, Liao Y, Zhou H 2018 Carbon 130 295Google Scholar

    [44]

    Esfahani M N, Jabbari M, Xu Y, Soutis C 2021 Mater. Today Commun. 26 101856Google Scholar

    [45]

    Liu X, Zhang G, Zhang Y W 2016 Nano Lett. 16 4954Google Scholar

    [46]

    Wu K, Zhang L, Li F, et al. 2024 Carbon 223 119021Google Scholar

    [47]

    Loh G C, Teo E, Tay B K 2011 Diamond Relat. Mater. 20 1137Google Scholar

    [48]

    Yang B, Yang H, Li T, Yang J, Yang P 2021 Appl. Surf. Sci. 536 147828Google Scholar

    [49]

    Koh Y R, Bin Hoque M S, Ahmad H, et al. 2021 Phys. Rev. Mater. 5 104604Google Scholar

    [50]

    Li Y, Zhao Q, Liu Y, Huang M, Ouyang X P 2024 Phys. Scr. 99 025944Google Scholar

    [51]

    Liu Y, Qiu L, Wang Z, Li H, Feng Y 2024 Composites, Part A 178 108008Google Scholar

    [52]

    Wu S, Wang J, Xie H, Guo Z 2020 Energies 13 5851Google Scholar

    [53]

    Yang Y, Ma J, Yang J, Zhang Y 2022 ACS Appl. Mater. Interfaces 14 45742Google Scholar

    [54]

    Yang C, Wang J, Ma D, Li Z, He Z, Liu L, Fu Z, Yang J Y 2023 Int. J. Heat Mass Transfer 214 124433Google Scholar

  • [1] 刘东静, 周福, 胡志亮, 黄家强. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究. 物理学报, 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [2] 刘东静, 周福, 陈帅阳, 胡志亮. 氮化镓/石墨烯/碳化硅异质界面热输运特性的分子动力学研究. 物理学报, 2023, 72(15): 157901. doi: 10.7498/aps.72.20230537
    [3] 陈琼, 薛春霞, 王勋. 基于温度效应的无限长压电圆杆纵波分析. 物理学报, 2021, 70(3): 035201. doi: 10.7498/aps.70.20200774
    [4] 刘东静, 王韶铭, 杨平. 石墨烯/碳化硅异质界面热学特性的分子动力学模拟. 物理学报, 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [5] 邰建鹏, 郭伟玲, 李梦梅, 邓杰, 陈佳昕. GaN基微缩化发光二极管尺寸效应和阵列显示. 物理学报, 2020, 69(17): 177301. doi: 10.7498/aps.69.20200305
    [6] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响. 物理学报, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [7] 金鑫, 杨春明, 滑文强, 李怡雯, 王劼. PS3000-b-PAA5000球形胶束温度效应的原位小角X射线散射技术研究. 物理学报, 2018, 67(4): 048301. doi: 10.7498/aps.67.20172167
    [8] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [9] 胡雪兰, 罗阳, 赵若汐, 胡艳敏, 张艳峰, 宋庆功. NiAl中Ni空位对杂质C原子的多重俘获及温度效应的第一性原理研究. 物理学报, 2016, 65(20): 206101. doi: 10.7498/aps.65.206101
    [10] 阳喜元, 全军. 金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究. 物理学报, 2015, 64(11): 116201. doi: 10.7498/aps.64.116201
    [11] 谷卓, 班士良. 纤锌矿结构ZnO/MgxZn1-xO量子阱中带间光吸收的尺寸效应和三元混晶效应. 物理学报, 2014, 63(10): 107301. doi: 10.7498/aps.63.107301
    [12] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [13] 羊梦诗, 李鑫, 叶志鹏, 陈亮, 徐灿, 储修祥. 丝素氨基酸寡肽链生长过程中的尺寸效应. 物理学报, 2013, 62(23): 236101. doi: 10.7498/aps.62.236101
    [14] 张祺, 厚美瑛. 直剪颗粒体系的尺寸效应研究. 物理学报, 2012, 61(24): 244504. doi: 10.7498/aps.61.244504
    [15] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响. 物理学报, 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [16] 周志东, 张春祖, 张颖. 外延铁电薄膜相变温度的尺寸效应. 物理学报, 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [17] 吴亚敏, 陈国庆. 带壳颗粒复合介质光学双稳的温度效应. 物理学报, 2009, 58(3): 2056-2060. doi: 10.7498/aps.58.2056
    [18] 陈英杰, 肖景林. 抛物线性限制势二能级系统量子点量子比特的温度效应. 物理学报, 2008, 57(11): 6758-6762. doi: 10.7498/aps.57.6758
    [19] 艾树涛, 蔡元贞. 与相变潜热有关的铁电-顺电相界动力学及其尺寸效应. 物理学报, 2006, 55(7): 3721-3724. doi: 10.7498/aps.55.3721
    [20] 王松有, 巨晓华, 李合印, 许旭东, 周鹏, 张荣君, 杨月梅, 周仕明, 陈良尧. Fe-Ag颗粒膜的光学与磁光尺寸效应. 物理学报, 2001, 50(11): 2252-2257. doi: 10.7498/aps.50.2252
计量
  • 文章访问数:  2288
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-13
  • 修回日期:  2024-05-18
  • 上网日期:  2024-06-18
  • 刊出日期:  2024-08-05

/

返回文章
返回