搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究

刘东静 胡志亮 周福 王鹏博 王振东 李涛

引用本文:
Citation:

基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究

刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛

Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation

Liu DongJing, Hu ZhiLiang, Zhou Fu, Wang PengBo, Wang Zhendong, Li Tao
PDF
导出引用
  • 为解决氮化镓芯片散热问题,采用非平衡分子动力学法,研究工作温度、界面尺寸、缺陷率及缺陷类型对氮化镓/石墨烯/金刚石异质界面热导的影响,通过计算声子态密度和声子参与率,分析界面热传导机理。研究发现,在100 K-500 K范围内,温度升高使界面热导增大2.1倍,重叠因子随温度增加而增加,界面间声子耦合程度增强,界面热导相应增大。当氮化镓层数从10层增加到26层时,界面热导降低75%,分析认为是界面声子耦合程度下降导致。另外,添加5层石墨烯会导致界面热导降低74%,分析认为是声子局域化程度加重造成;当缺陷率从0增大到10%时,金刚石碳原子缺陷使界面热导提高40%,缺陷散射增加低频声子数量,改善界面热传导;但镓、氮和石墨烯碳原子缺陷会加重声子局域化程度,均导致界面热导降低。研究结果有助于提升氮化镓芯片散热性能,同时对高可靠性氮化镓器件设计具有指导意义。
    Gallium Nitride chips are widely used in high-frequency and high-power devices. However, Thermal management is a critical challenge for gallium nitride devices.To improve thermal dissipation of gallium nitride devices, the Nonequilibrium Molecular Dynamics method was employed to investigate the effects of operating temperature, interface size, defect density and defect types on the interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure. Furthermore, the phonon state density and phonon participation ratio under various conditions were calculated to analyze the interface thermal conduction mechanism. The results indicate that interfacial thermal conductance increases with rising temperatures, highlighting the inherent self-regulating heat dissipation capabilities of heterogeneous. The interfacial thermal conductance of monolayer graphene structures increases by 2.1 times as the temperature increases from 100 K to 500 K. This is attributed to the overlap factor increases with temperature, which enhanced the phonon coupling between interfaces, leading to an increase in interfacial thermal conductance. Additionally, The study discovered that both increasing the number of layers of gallium nitride and graphene leads to reduction in interfacial thermal conductance.When the number of gallium nitride layers increases from 10 to 26, the interfacial thermal conductance decreases by 75%. The diminishing overlap factor with the increase in layer number is attributed to the decreased match of phonon vibrations between interfaces, resulting in lower thermal transfer efficiency. Similarly, when the number of graphene layers increases from 1 to 5, the interfacial thermal conductance decreases by 74%. The increase in graphene layers leads to reduction in low-frequency phonons, consequently lowering the interfacial thermal conductance. Moreover, multilayer graphene intensifies phonon localization, exacerbating the reduction in interfacial thermal conductance. The introduction of four types of vacancy defects is found to influence interfacial thermal conductance. Diamond carbon atom defects lead to increase in interfacial thermal conductance, whereas defects in gallium, nitrogen, and graphene carbon atoms result in decrease. As the defect concentration increases from 0 to 10%, Diamond carbon atom defects increased the interfacial thermal conductance by 40% due to defect scattering, which increased the number of low-frequency phonon modes and expanding the channels for interfacial heat transfer, thus ameliorating interfacial thermal conductance. Defects in graphene intensify the degree of graphene phonon localization, consequently leading to reduction in interfacial thermal conductance. Gallium and nitrogen defects both intensify the phonon localization of gallium nitride, impeding phonon transport channels. Moreover, gallium defects induce more severe phonon localization compared to nitrogen, consequently leading to lower interfacial thermal conductance. This research provides references for the manufacturing of highly reliable gallium nitride devices and the widespread use of gallium nitride heterostructures.

  • [1]

    Liu Q B, Yu C, Guo J C, Ma M Y, He Z Z, Zhou C J, Gao X D, Yu H, Feng Z H 2023 Acta Phys. Sin. 72 320 (in Chinese) [刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红 2023 物理学报 72 320]

    [2]

    Jia X, Wei J J, Huang Y B, Shao S W, Kong Y C, Liu J L, Chen L X, Li C M, Ye H T 2020 Surf. Technol. 49 111 (in Chinese) [贾鑫, 魏俊俊, 黄亚博, 邵思武, 孔月婵, 刘金龙, 陈良贤, 李成明, 叶海涛 2020 表面技术 49 111]

    [3]

    Wu Y J, Fang L, Xu Y 2019 Npj Comput. Mater. 5 1

    [4]

    Feng J J,Fan Y M,Fang D,Deng X G,Yu G H,Wei Z P,Zhang B S 2022 J. Synth. Cryst. 51 730 (in Chinese) [冯家驹, 范亚明, 房丹, 邓旭光, 于国浩, 魏志鹏, 张宝顺 2022 人工晶体学报 51 730]

    [5]

    Francis D, Faili F, Babić D, Ejeckam F, Nurmikko A, Maris H 2010 Diamond Relat. Mater. 19 229

    [6]

    Cho J, Francis D, Altman D H, Asheghi M, Goodson K E 2017 J. Appl. Phys. 121 055105

    [7]

    Zhou Y, Anaya J, Pomeroy J, Sun H, Gu X, Xie A, Beam E, Becker M, Grotjohn T A, Lee C, Kuball M 2017 ACS Appl. Mater. Interfaces 9 34416

    [8]

    Huang X, Guo Z 2021 Int. J. Heat Mass Transfer 178 121613

    [9]

    Mu F, Xu B, Wang X, Gao R, Huang S, Wei K, Takeuchi K, Chen X, Yin H, Wang D, Yu J, Suga T, Shiomi J, Liu X 2022 J. Alloys Compd. 905 164076

    [10]

    Tao L, Theruvakkattil Sreenivasan S, Shahsavari R 2017 ACS Appl. Mater. Interfaces 9 989

    [11]

    Jia X, Huang L, Sun M, Zhao X, Wei J, Li C 2022 Coatings 12 672

    [12]

    Qi Z, Shen W, Li R, Sun X, Li L, Wang Q, Wu G, Liang K 2023 Appl. Surf. Sci. 615 156419

    [13]

    Middleton C, Chandrasekar H, Singh M, Pomeroy J W, Uren M J, Francis D, Kuball M 2019 Appl. Phys. Express 12 024003

    [14]

    Wu L, Sun X, Gong F, Luo J, Yin C, Sun Z, Xiao R 2022 Nanomaterials 12 894

    [15]

    Liu F, Zou R, Hu N, Ning H, Yan C, Liu Y, Wu L, Mo F, Fu S 2019 Nanoscale 11 4067

    [16]

    Hu S, Ju S, Shao C, Guo J, Xu B, Ohnishi M, Shiomi J 2021 Mater. Today Phys. 16 100324

    [17]

    Hu M, Poulikakos D 2013 Int. J. Heat Mass Transfer 62 205

    [18]

    Mischke J, Pennings J, Weisenseel E, Kerger P, Rohwerder M, Mertin W, Bacher G 2020 2d Mater. 7 035019

    [19]

    Suntornwipat N, Aitkulova A, Djurberg V, Majdi S 2023 Thin Solid Films 770 139766

    [20]

    Shen B, Ji Z, Lin Q, Gong P, Xuan N, Chen S, Liu H, Huang Z, Xiao T, Sun Z 2022 Chem. Mater. 34 3941

    [21]

    Jiang M, Chen C, Wang P, Guo D, Han S, Li X, Lu S, Hu X 2022 Proc. Natl. Acad. Sci. U.S.A. 119 e2201451119

    [22]

    Li D, Zou W, Jiang W, Peng X, Song S, Qin Q H, Xue J M 2020 Ceram. Int. 46 10885

    [23]

    Badokas K, Kadys A, Mickevičius J, Ignatjev I, Skapas M, Stanionytė S, Radiunas E, Juška G, Malinauskas T 2021 J. Phys. D: Appl. Phys. 54 205103

    [24]

    Barbier C, Largeau L, Gogneau N, Travers L, David C, Madouri A, Tamsaout D, Girard J C, Rodary G, Montigaud H, Durand C, Tchernycheva M, Glas F, Harmand J C 2023 Cryst. Growth Des. 23 6517

    [25]

    Sun H, Simon R, Pomeroy J, Francis D, Faili F, Twitchen D, Kuball M 2015 Appl. Phys. Lett. 106 111906-1

    [26]

    Wang J, Shen Y, Yang P 2023 Compos. Commun. 40 101616

    [27]

    Tang Y, Liu J, Yu Z, Sun L, Zhu L 2023 Chin. Phys. B 32 066502

    [28]

    Liu D 2020 Phys. Lett. A 384 126077

    [29]

    Ou B, Yan J, Wang Q, Lu L 2022 Molecules 27 905

    [30]

    Sang L X, Li Z K, 2024 Acta Phys. Sin. 73 103105 [桑丽霞,李志康 2024 物理学报73 103105]

    [31]

    Liu D J, Zhou F, Chen S Y, Hu Z L, 2023 Acta Phys. Sin. 72 157901 (in Chinese) [刘东静,周福,陈帅阳,胡志亮 2023 物理学报72 157901]

    [32]

    Qu G, Deng Z, Guo W, Peng Z, Jia Q, Deng E, Zhang H 2023 IEEE Trans. Compon. Packaging Manuf. Technol. 13 816

    [33]

    Wu B, Zhou M, Xu D, Liu J, Tang R, Zhang P 2022 Surf. Interfaces 32 102119

    [34]

    Tang Y, Zhang Z, Li L, Guo J, Yang P 2022 Int. J. Therm. Sci. 171 107231

    [35]

    Wu X, Han Q 2021 ACS Appl. Mater. Interfaces 13 32564

    [36]

    Huang H, Zhong Y, Cai B, Wang J, Liu Z, Peng Q 2023 Surf. Interfaces 37 102736

    [37]

    Ma D, Zhang L 2020 J. Phys.: Condens. Matter 32 425001

    [38]

    Danilchenko B A, Paszkiewicz T, Wolski S, JeŻowski A, Plackowski T 2006 Appl. Phys. Lett. 89 061901.

    [39]

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 283 (in Chinese) [刘东静, 王韶铭, 杨平 2021 物理学报 70 283]

    [40]

    Yang N, Luo T, Esfarjani K, Henry A, Tian Z, Shiomi J, Chalopin Y, Li B, Chen G 2015 J. Comput. Theor. Nanosci. 12 168

    [41]

    Liu Y, Qiu L, Liu J, Feng Y 2023 Int. J. Heat Mass Transfer 209 124123

    [42]

    Wei N, Zhou C, Li Z, Ou B, Zhao K, Yu P, Li S, Zhao J 2022 Mater. Today Commun. 30 103147

    [43]

    Li M, Zhou H, Zhang Y, Liao Y, Zhou H 2018 Carbon 130 295

    [44]

    Esfahani M N, Jabbari M, Xu Y, Soutis C 2021 Mater. Today Commun. 26 101856

    [45]

    Liu X, Zhang G, Zhang Y W 2016 Nano Lett. 16 4954

    [46]

    Wu K, Zhang L, Li F, Sang L, Liao M, Tang K, Ye J, Gu S 2024 Carbon 223 119021

    [47]

    Loh G C, Teo E, Tay B K 2011 Diamond Relat. Mater. 20 1137

    [48]

    Yang B, Yang H, Li T, Yang J, Yang P 2021 Appl. Surf. Sci. 536 147828

    [49]

    Koh Y R, Hoque M S B, Ahmad H, Olson D H, Liu Z, Shi J, Wang Y, Huynh K, Hoglund E R, Aryana K, Howe J M, Goorsky M S, Graham S, Luo T, Hite J K, Doolittle W A, Hopkins P E 2021 Phys. Rev. Materials 5 104604

    [50]

    Li Y, Zhao Q, Liu Y, huang M, Ouyang X 2024 Phys. Scr. 99 025944

    [51]

    Liu Y, Qiu L, Wang Z, Li H, Feng Y 2024 Composites, Part A 178 108008

    [52]

    Wu S, Wang J, Xie H, Guo Z 2020 Energies 13 5851

    [53]

    Yang Y, Ma J, Yang J, Zhang Y 2022 ACS Appl. Mater. Interfaces 14 45742

    [54]

    Yang C, Wang J, Ma D, Li Z, He Z, Liu L, Fu Z, Yang J Y 2023 Int. J. Heat Mass Transfer 214 124433

  • [1] 刘东静, 周福, 胡志亮, 黄家强. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究. 物理学报, doi: 10.7498/aps.73.20240021
    [2] 刘东静, 周福, 陈帅阳, 胡志亮. 氮化镓/石墨烯/碳化硅异质界面热输运特性的分子动力学研究. 物理学报, doi: 10.7498/aps.72.20230537
    [3] 陈琼, 薛春霞, 王勋. 基于温度效应的无限长压电圆杆纵波分析. 物理学报, doi: 10.7498/aps.70.20200774
    [4] 刘东静, 王韶铭, 杨平. 石墨烯/碳化硅异质界面热学特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210613
    [5] 邰建鹏, 郭伟玲, 李梦梅, 邓杰, 陈佳昕. GaN基微缩化发光二极管尺寸效应和阵列显示. 物理学报, doi: 10.7498/aps.69.20200305
    [6] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响. 物理学报, doi: 10.7498/aps.68.20181876
    [7] 金鑫, 杨春明, 滑文强, 李怡雯, 王劼. PS3000-b-PAA5000球形胶束温度效应的原位小角X射线散射技术研究. 物理学报, doi: 10.7498/aps.67.20172167
    [8] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, doi: 10.7498/aps.65.176201
    [9] 胡雪兰, 罗阳, 赵若汐, 胡艳敏, 张艳峰, 宋庆功. NiAl中Ni空位对杂质C原子的多重俘获及温度效应的第一性原理研究. 物理学报, doi: 10.7498/aps.65.206101
    [10] 阳喜元, 全军. 金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究. 物理学报, doi: 10.7498/aps.64.116201
    [11] 谷卓, 班士良. 纤锌矿结构ZnO/MgxZn1-xO量子阱中带间光吸收的尺寸效应和三元混晶效应. 物理学报, doi: 10.7498/aps.63.107301
    [12] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, doi: 10.7498/aps.63.120701
    [13] 羊梦诗, 李鑫, 叶志鹏, 陈亮, 徐灿, 储修祥. 丝素氨基酸寡肽链生长过程中的尺寸效应. 物理学报, doi: 10.7498/aps.62.236101
    [14] 张祺, 厚美瑛. 直剪颗粒体系的尺寸效应研究. 物理学报, doi: 10.7498/aps.61.244504
    [15] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响. 物理学报, doi: 10.7498/aps.61.066101
    [16] 周志东, 张春祖, 张颖. 外延铁电薄膜相变温度的尺寸效应. 物理学报, doi: 10.7498/aps.59.6620
    [17] 吴亚敏, 陈国庆. 带壳颗粒复合介质光学双稳的温度效应. 物理学报, doi: 10.7498/aps.58.2056
    [18] 陈英杰, 肖景林. 抛物线性限制势二能级系统量子点量子比特的温度效应. 物理学报, doi: 10.7498/aps.57.6758
    [19] 艾树涛, 蔡元贞. 与相变潜热有关的铁电-顺电相界动力学及其尺寸效应. 物理学报, doi: 10.7498/aps.55.3721
    [20] 王松有, 巨晓华, 李合印, 许旭东, 周鹏, 张荣君, 杨月梅, 周仕明, 陈良尧. Fe-Ag颗粒膜的光学与磁光尺寸效应. 物理学报, doi: 10.7498/aps.50.2252
计量
  • 文章访问数:  98
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-06-18

/

返回文章
返回