搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直剪颗粒体系的尺寸效应研究

张祺 厚美瑛

引用本文:
Citation:

直剪颗粒体系的尺寸效应研究

张祺, 厚美瑛

Research on size effect of direct shear test

Zhang Qi, Hou Mei-Ying
PDF
导出引用
  • 本文通过改变直剪盒内高精度球形玻璃珠粒径、 直剪盒厚度和长度的比例关系来观察体系剪切应力同试样边界条件的关系. 发现随着玻璃珠粒径的减小样品所能承受的剪切应力会略微减小, 而直剪盒长度的减小也会导致剪切应力的下降. 实验结果表明直剪盒长度不足35倍颗粒粒径或者其厚度小于0.5倍直剪盒长度的时候, 直剪实验具有明显的尺寸效应, 现行的直剪实验指导标准应当予以修正.
    The shear behavior of granular material is not only the most important mechanical property but also the most basic technical indicator in an engineering project. Today, it is still widely used, owing to its simplicity in operation. However, unlike common solid material, granular material shows the properties of disorder and non-uniformity. This is due to the formation of complex network force chains in granular medium. This also leads to the size effect of shear stress in granular solid. In this paper, direct shear tests with various sizes of high-precision spherical glass beads and sample aspect ratio are carried out to investigate the size effect of shear stress. It is found that when the particle size of glass bead decreases, or when the number of glass beads increases, the shear stress decreases slightly, while the reduction of the sample aspect ratio will lead to similar changes. The experimental results show that when the sample length is less than 50 times the particle size or aspect ratio less than 0.5, direct shear tests shows a significant size effect. Therefore the result of this investigation suggests that the guidance for current standard direct shear test should be revised.
    • 基金项目: 地震行业科研经费(批准号: 201208011)和国家自然科学基金(批准号: 11034010)资助的课题.
    • Funds: Project supported by the Special Fund for Earthquake Research(Grant Nos. 201208011), and the National Natural Science Foundation of China (Grant Nos. 11034010)
    [1]

    Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Phys. Rev. E 85 031306

    [2]

    Khidas Y, Jia X P 2012 Phys. Rev. E 85 051302

    [3]

    Hartley R R, Behringer R P 2003 Nature 421 928

    [4]

    majmudar T S, Behringer R P 2005 Nature 435 1079

    [5]

    Cerato A B, Lutenegger A J 2006 Geotech Test. J. 29 507

    [6]

    Douglas E J, Julio R V, Matthew T E 2007 Geotech Test. J. 30 512

    [7]

    Zhou Q, Hayley H S, Brian T S 2009 China. Sci. Bull. 54 4337

    [8]

    Wang J F, Gutierrez M 2010 Geotechnique 60 395

    [9]

    Wang J F, Gutierrez M 2009 Powders & Grains 1145 365

    [10]

    Andres D O, Daniel M H, Hayley H S 2009 Powders & Grains 1145 413

    [11]

    Sezer A, Altun S, Goktepe B A 2011 S Oils and Foundations 51 857

    [12]

    Pecker A 2007 Advanced Earthquake Engineering Analysis 494 978

    [13]

    Feng D K, Hou W J, Zhang J M 2012 China Civil Engineering Journal 45 169 (in Chinese) [冯大阔, 侯文峻, 张建民 2012 土木工程学报 45 169]

    [14]

    Xu S H, Zheng G, Xu G L 2010 Rock and Soil Mechanics 31 08 (in Chinese) [徐舜华, 郑刚, 徐光黎 2010 岩土力学 31 08]

    [15]

    Bi Z W, Sun Q C, Liu, J G, Zhang C H 2011 Acta Phys. Sin. 60 034502 (in Chinese) [毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉 2011 物理学报 60 034502]

    [16]

    Cui L, Sullivan C O 2006 Geotechnique 56 455

    [17]

    Yan Y, Ji S Y 2010 Int. J. Numer. Anal. Meth. Geomech 34 978

    [18]

    Liu S H 2006 Can. Geotech. J. 43 155

    [19]

    Wang G Q, Sun Q C 2009 Engineering Mechanics 26 Sup.II-0001-07

    [20]

    Liu H T, Cheng X H 2009 Rock and Soil Mechanics 30 Sup.I-0287-06 (in Chinese) [刘海涛, 程晓辉 2009 岩土力学 30 增 I-0287-06]

    [21]

    Xu F X, Chen X 2009 Mechanics of Materials 41 174

  • [1]

    Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Phys. Rev. E 85 031306

    [2]

    Khidas Y, Jia X P 2012 Phys. Rev. E 85 051302

    [3]

    Hartley R R, Behringer R P 2003 Nature 421 928

    [4]

    majmudar T S, Behringer R P 2005 Nature 435 1079

    [5]

    Cerato A B, Lutenegger A J 2006 Geotech Test. J. 29 507

    [6]

    Douglas E J, Julio R V, Matthew T E 2007 Geotech Test. J. 30 512

    [7]

    Zhou Q, Hayley H S, Brian T S 2009 China. Sci. Bull. 54 4337

    [8]

    Wang J F, Gutierrez M 2010 Geotechnique 60 395

    [9]

    Wang J F, Gutierrez M 2009 Powders & Grains 1145 365

    [10]

    Andres D O, Daniel M H, Hayley H S 2009 Powders & Grains 1145 413

    [11]

    Sezer A, Altun S, Goktepe B A 2011 S Oils and Foundations 51 857

    [12]

    Pecker A 2007 Advanced Earthquake Engineering Analysis 494 978

    [13]

    Feng D K, Hou W J, Zhang J M 2012 China Civil Engineering Journal 45 169 (in Chinese) [冯大阔, 侯文峻, 张建民 2012 土木工程学报 45 169]

    [14]

    Xu S H, Zheng G, Xu G L 2010 Rock and Soil Mechanics 31 08 (in Chinese) [徐舜华, 郑刚, 徐光黎 2010 岩土力学 31 08]

    [15]

    Bi Z W, Sun Q C, Liu, J G, Zhang C H 2011 Acta Phys. Sin. 60 034502 (in Chinese) [毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉 2011 物理学报 60 034502]

    [16]

    Cui L, Sullivan C O 2006 Geotechnique 56 455

    [17]

    Yan Y, Ji S Y 2010 Int. J. Numer. Anal. Meth. Geomech 34 978

    [18]

    Liu S H 2006 Can. Geotech. J. 43 155

    [19]

    Wang G Q, Sun Q C 2009 Engineering Mechanics 26 Sup.II-0001-07

    [20]

    Liu H T, Cheng X H 2009 Rock and Soil Mechanics 30 Sup.I-0287-06 (in Chinese) [刘海涛, 程晓辉 2009 岩土力学 30 增 I-0287-06]

    [21]

    Xu F X, Chen X 2009 Mechanics of Materials 41 174

  • [1] 程琦, 冉宪文, 刘苹, 汤文辉, Raphael Blumenfeld. 颗粒物质内自旋小球运动行为的数值模拟研究. 物理学报, 2018, 67(1): 014702. doi: 10.7498/aps.67.20171459
    [2] 周志刚, 宗谨, 王文广, 厚美瑛. 颗粒样品形变对声波传播影响的实验探究. 物理学报, 2017, 66(15): 154502. doi: 10.7498/aps.66.154502
    [3] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究. 物理学报, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [4] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应. 物理学报, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [5] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [6] 羊梦诗, 李鑫, 叶志鹏, 陈亮, 徐灿, 储修祥. 丝素氨基酸寡肽链生长过程中的尺寸效应. 物理学报, 2013, 62(23): 236101. doi: 10.7498/aps.62.236101
    [7] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [8] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散. 物理学报, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [9] 冯旭, 张国华, 孙其诚. 颗粒尺寸分散度对颗粒体系力学和几何结构特性的影响. 物理学报, 2013, 62(18): 184501. doi: 10.7498/aps.62.184501
    [10] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响. 物理学报, 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [11] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究. 物理学报, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [12] 彭亚晶, 张卓, 王勇, 刘小嵩. 振动颗粒物质“巴西果”分离效应实验和理论研究. 物理学报, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [13] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展. 物理学报, 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [14] 周志东, 张春祖, 张颖. 外延铁电薄膜相变温度的尺寸效应. 物理学报, 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [15] 孔维姝, 胡林, 张兴刚, 岳国联. 颗粒堆的体积分数与制备流量关系的实验研究. 物理学报, 2010, 59(1): 411-416. doi: 10.7498/aps.59.411
    [16] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [17] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [18] 胡国琦, 张训生, 鲍德松, 唐孝威. 二维颗粒流通道宽度效应的分子动力学模拟. 物理学报, 2004, 53(12): 4277-4281. doi: 10.7498/aps.53.4277
    [19] 胡 林, 杨 平, 徐 亭, 江 阳, 须海江, 龙 为, 杨昌顺, 张 弢, 陆坤权. 颗粒物质中圆棒受到的静摩擦力. 物理学报, 2003, 52(4): 879-882. doi: 10.7498/aps.52.879
    [20] 王松有, 巨晓华, 李合印, 许旭东, 周鹏, 张荣君, 杨月梅, 周仕明, 陈良尧. Fe-Ag颗粒膜的光学与磁光尺寸效应. 物理学报, 2001, 50(11): 2252-2257. doi: 10.7498/aps.50.2252
计量
  • 文章访问数:  5991
  • PDF下载量:  680
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-29
  • 修回日期:  2012-08-29
  • 刊出日期:  2012-12-05

直剪颗粒体系的尺寸效应研究

  • 1. 武汉大学物理科学与技术学院人工微纳结构教育部重点实验室, 武汉 430072;
  • 2. 中国科学院物理研究所北京凝聚态国家重点实验室, 北京 100190
    基金项目: 地震行业科研经费(批准号: 201208011)和国家自然科学基金(批准号: 11034010)资助的课题.

摘要: 本文通过改变直剪盒内高精度球形玻璃珠粒径、 直剪盒厚度和长度的比例关系来观察体系剪切应力同试样边界条件的关系. 发现随着玻璃珠粒径的减小样品所能承受的剪切应力会略微减小, 而直剪盒长度的减小也会导致剪切应力的下降. 实验结果表明直剪盒长度不足35倍颗粒粒径或者其厚度小于0.5倍直剪盒长度的时候, 直剪实验具有明显的尺寸效应, 现行的直剪实验指导标准应当予以修正.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回