搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

振动颗粒物质“巴西果”分离效应实验和理论研究

彭亚晶 张卓 王勇 刘小嵩

引用本文:
Citation:

振动颗粒物质“巴西果”分离效应实验和理论研究

彭亚晶, 张卓, 王勇, 刘小嵩

Experimental and theoretical investigations of the effect of “Brazil Nut” segregation in vibrating granular matters

Peng Ya-Jing, Zhang Zhuo, Wang Yong, Liu Xiao-Song
PDF
导出引用
  • 本文通过实验和理论研究了影响"巴西果"分离的因素及其物理机理. 分析了振动加速度、大小颗粒尺寸和密度对分离时间的影响, 并利用流体模型对分离时间作估算, 对实验结果进行定性解释. 结果表明在振动频率固定时, 调节振动加速度是控制"巴西果"分离的一个主要手段. 振动加速度存在一个临界值, 当高于此临界值时, "巴西果"分离的主要物理机理由对流机理转变为几何填空机理, 且振动加速度对分离影响变小, 大颗粒尺寸对分离的影响增大. 可通过调节大颗粒的尺寸来改变分离效果. 当大、 小颗粒密度比为1时, 仍会出现"巴西果"分离现象. 增大小颗粒尺寸或密度可以促进"巴西果"分离.
    Size segregation is one of important properties of vibrating granular matters. It is significant to understand and study the segregation mechanisms and parameter range of controlling factors of mixed granular matters for the development of industry, agriculture and pharmaceutical. In this paper, we investigate the influence factors and physical mechanisms of "Brazil Nut" segregation experimentally and theoretically. The influences of vibrating acceleration, sizes and densities of large and small granules on the segregation time are analyzed. The hydro-model is used to evaluate segregation time and explain the experimental results qualitatively. Results show that the vibration acceleration is a main controlling factor for "Brazil Nut" segregation in the case of fixed frequency. There is a critical acceleration. When the acceleration is larger then its critical value the main physical mechanism changes from convection to filling voids, and the effect of acceleration on segregation decreases, while the effect of size of large granule on it increases. Furthermore, "Brazil Nut" segregation still arises when the density ratio is equal to 1. The increase of the size or density of small granular may enhance "Brazil Nut" segregation.
    [1]

    Sun Q C, Jin F, Wang G Q, Zhang G H 2010 Acta Phys. Sin. 59 0030 (in Chinese) [孙其诚, 金峰, 王光谦, 张国华 2010 物理学报 59 0030]

    [2]

    HuY, Hu L 2009 Journal of Shandong University 44 25 (in Chinese) [胡云, 胡林 2009 山东大学学报 44 25]

    [3]

    Rong L W, Zhan J M 2010 Acta Phys. Sin. 59 5572 (in Chinese) [容亮湾, 詹杰民 2010 物理学报 59 5572]

    [4]

    Hong D C, Quinn P V, Stefan L 2001 Phys. Rev. Lett. 86 3423

    [5]

    Zhao, Y Z, Jiang M Q, Zheng J Y 2009 Acta Phys. Sin. 58 1812 (in Chinese) [赵永志, 姜茂强, 郑津洋 2009 物理学报 58 1812]

    [6]

    Metzger M J, Remy B, Glasser B J 2011 Powder Technology 205 42

    [7]

    Mobius M E, Lauderdale B E, Nagel S R, Jaeger H M 2001 Nature 414 270

    [8]

    Yan X Q, Shi Q F, Hou M Y, Lu K Q 2003 Physics 32 748 (in Chinese) [阎学群, 史庆藩, 厚美瑛, 陆坤权 2003 物理 32 748]

    [9]

    Yan X Q, Shi Q F, Hou M Y, Lu K Q 2003 Phys. Rev. Lett. 91 014302

    [10]

    Jiang Z H, Wang Y Y, Wu J 2006 Acta Phys. Sin. 55 4748 [姜泽辉, 王运鹰, 吴晶 2006 物理学报 55 4748]

    [11]

    Duran J, Mazozi J, Clement E, Rajchenbach J 1994 Phys. Rev. E 50 5138

    [12]

    Tai C H, Hsiau S S, Kruelle C A 2010 Powder Technology 204 255

    [13]

    Rosato A, Strandburg K J, Prinz F, Swendsen R H 1987 Phys. Rev. Lett. 58 1038

    [14]

    Knight J B 1997 Phys. Rev. E 55 6016

    [15]

    Barker G C, Metha A 1993 Nature 364 486

    [16]

    Hsiau S S, Yu H Y 1997 Powder Technology 93 83

    [17]

    Mehta A, Barker G C 1991 Phys. Rev. Lett. 67 394

    [18]

    Vanel L, Rosato A D, Dave R N 1997 Phys. Rev. Lett. 78 1255

    [19]

    Schroter M, Ulrich S, Kreft J, Swift J B, Swinney H L 2006 Phys. Rev. E: Statistical, Nonlinear, and Soft Matter Physics 74 011307

    [20]

    Cooke W, Warr S, Huntley J M, Ball R C 1996 Phys. Rev. E 53 2812

    [21]

    Duran J, Rajchenbach J, Clement E 1993 Phys. Rev. Lett. 70 2431

    [22]

    Kudrolli A 2004 Rep. Prog. Phys. 67 236

    [23]

    Chen W Z, Wei R J, Wang B R 1997 Phys. Lett. A 228 321

    [24]

    Clement C P, Pacheco-Martinez H A, Swift M R, King P J 2010 Europhysics Letters 91 54001

    [25]

    Knight J B, Jaeger H M, Nagel S R 1993 Phys. Rev. Lett. 70 3730

    [26]

    Falcon E, Fauve S, Laroche C 1999 Eur. Phys. J. B 9 183

    [27]

    Liffman K, Muniandy K, Rhodes M, Gutteridge D, Metcalfe G 2001 Granular Matter 3 205

    [28]

    Ahmad K, Smalley I J 1973 Powder Technology 8 69

    [29]

    Shinbrot T, Muzzio F J 1998 Phys. Rev. Lett. 81 4365

    [30]

    Zhang H, Guo Y B, Chen X, Wang D, Cheng P J 2007 Acta Phys. Sin. 56 2030 (in Chinese) [张航, 郭蕴博, 陈骁, 王端, 程鹏俊 2007 物理学报 56 2030]

    [31]

    Tan G S 1979 Shape and Flow: Talking about Resistance to Fluid Dynamics (Beijing, China: Science Publishers) [谈镐声 1979 形与流: 漫谈阻力流体动力学 (北京: 科学出版社)]

  • [1]

    Sun Q C, Jin F, Wang G Q, Zhang G H 2010 Acta Phys. Sin. 59 0030 (in Chinese) [孙其诚, 金峰, 王光谦, 张国华 2010 物理学报 59 0030]

    [2]

    HuY, Hu L 2009 Journal of Shandong University 44 25 (in Chinese) [胡云, 胡林 2009 山东大学学报 44 25]

    [3]

    Rong L W, Zhan J M 2010 Acta Phys. Sin. 59 5572 (in Chinese) [容亮湾, 詹杰民 2010 物理学报 59 5572]

    [4]

    Hong D C, Quinn P V, Stefan L 2001 Phys. Rev. Lett. 86 3423

    [5]

    Zhao, Y Z, Jiang M Q, Zheng J Y 2009 Acta Phys. Sin. 58 1812 (in Chinese) [赵永志, 姜茂强, 郑津洋 2009 物理学报 58 1812]

    [6]

    Metzger M J, Remy B, Glasser B J 2011 Powder Technology 205 42

    [7]

    Mobius M E, Lauderdale B E, Nagel S R, Jaeger H M 2001 Nature 414 270

    [8]

    Yan X Q, Shi Q F, Hou M Y, Lu K Q 2003 Physics 32 748 (in Chinese) [阎学群, 史庆藩, 厚美瑛, 陆坤权 2003 物理 32 748]

    [9]

    Yan X Q, Shi Q F, Hou M Y, Lu K Q 2003 Phys. Rev. Lett. 91 014302

    [10]

    Jiang Z H, Wang Y Y, Wu J 2006 Acta Phys. Sin. 55 4748 [姜泽辉, 王运鹰, 吴晶 2006 物理学报 55 4748]

    [11]

    Duran J, Mazozi J, Clement E, Rajchenbach J 1994 Phys. Rev. E 50 5138

    [12]

    Tai C H, Hsiau S S, Kruelle C A 2010 Powder Technology 204 255

    [13]

    Rosato A, Strandburg K J, Prinz F, Swendsen R H 1987 Phys. Rev. Lett. 58 1038

    [14]

    Knight J B 1997 Phys. Rev. E 55 6016

    [15]

    Barker G C, Metha A 1993 Nature 364 486

    [16]

    Hsiau S S, Yu H Y 1997 Powder Technology 93 83

    [17]

    Mehta A, Barker G C 1991 Phys. Rev. Lett. 67 394

    [18]

    Vanel L, Rosato A D, Dave R N 1997 Phys. Rev. Lett. 78 1255

    [19]

    Schroter M, Ulrich S, Kreft J, Swift J B, Swinney H L 2006 Phys. Rev. E: Statistical, Nonlinear, and Soft Matter Physics 74 011307

    [20]

    Cooke W, Warr S, Huntley J M, Ball R C 1996 Phys. Rev. E 53 2812

    [21]

    Duran J, Rajchenbach J, Clement E 1993 Phys. Rev. Lett. 70 2431

    [22]

    Kudrolli A 2004 Rep. Prog. Phys. 67 236

    [23]

    Chen W Z, Wei R J, Wang B R 1997 Phys. Lett. A 228 321

    [24]

    Clement C P, Pacheco-Martinez H A, Swift M R, King P J 2010 Europhysics Letters 91 54001

    [25]

    Knight J B, Jaeger H M, Nagel S R 1993 Phys. Rev. Lett. 70 3730

    [26]

    Falcon E, Fauve S, Laroche C 1999 Eur. Phys. J. B 9 183

    [27]

    Liffman K, Muniandy K, Rhodes M, Gutteridge D, Metcalfe G 2001 Granular Matter 3 205

    [28]

    Ahmad K, Smalley I J 1973 Powder Technology 8 69

    [29]

    Shinbrot T, Muzzio F J 1998 Phys. Rev. Lett. 81 4365

    [30]

    Zhang H, Guo Y B, Chen X, Wang D, Cheng P J 2007 Acta Phys. Sin. 56 2030 (in Chinese) [张航, 郭蕴博, 陈骁, 王端, 程鹏俊 2007 物理学报 56 2030]

    [31]

    Tan G S 1979 Shape and Flow: Talking about Resistance to Fluid Dynamics (Beijing, China: Science Publishers) [谈镐声 1979 形与流: 漫谈阻力流体动力学 (北京: 科学出版社)]

  • [1] 周益娴. 基于连续数值模拟的筒仓卸载过程中颗粒物压强及其速度场分析. 物理学报, 2019, 68(13): 134701. doi: 10.7498/aps.68.20182205
    [2] 蒋亦民, 刘佑. 颗粒-颗粒接触力的热力学模型. 物理学报, 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [3] 程琦, 冉宪文, 刘苹, 汤文辉, Raphael Blumenfeld. 颗粒物质内自旋小球运动行为的数值模拟研究. 物理学报, 2018, 67(1): 014702. doi: 10.7498/aps.67.20171459
    [4] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究. 物理学报, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [5] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应. 物理学报, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [6] 苏涛, 冯耀东, 赵宏武, 黄德财, 孙刚. 对颗粒物质运动的一致性进行控制的随机力场. 物理学报, 2013, 62(16): 164502. doi: 10.7498/aps.62.164502
    [7] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [8] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散. 物理学报, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [9] 陆坤权, 厚美瑛, 姜泽辉, 王强, 孙刚, 刘寄星. 以颗粒物理原理认识地震地震成因、地震前兆和地震预测. 物理学报, 2012, 61(11): 119103. doi: 10.7498/aps.61.119103
    [10] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究. 物理学报, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [11] 黄德财, 冯耀东, 解为梅, 陆明, 吴海平, 胡凤兰, 邓开明. 颗粒密度对旋转筒内二元颗粒体系分离的影响. 物理学报, 2012, 61(12): 124501. doi: 10.7498/aps.61.124501
    [12] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展. 物理学报, 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [13] 赵永志, 江茂强, 郑津洋. 巴西果效应分离过程的计算颗粒力学模拟研究. 物理学报, 2009, 58(3): 1812-1818. doi: 10.7498/aps.58.1812
    [14] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [15] 彭 政, 厚美瑛, 史庆藩, 陆坤权. 颗粒介质的离散态特性研究. 物理学报, 2007, 56(2): 1195-1202. doi: 10.7498/aps.56.1195
    [16] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [17] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [18] 姜泽辉, 李 斌, 赵海发, 王运鹰, 戴智斌. 竖直振动颗粒物厚层中冲击力分岔现象. 物理学报, 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [19] 胡 林, 杨 平, 徐 亭, 江 阳, 须海江, 龙 为, 杨昌顺, 张 弢, 陆坤权. 颗粒物质中圆棒受到的静摩擦力. 物理学报, 2003, 52(4): 879-882. doi: 10.7498/aps.52.879
    [20] 姜泽辉, 陆坤权, 厚美瑛, 陈 唯, 陈相君. 振动颗粒混合物中的三明治式分离. 物理学报, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
计量
  • 文章访问数:  7073
  • PDF下载量:  1426
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-01
  • 修回日期:  2011-11-24
  • 刊出日期:  2012-07-05

/

返回文章
返回