搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平激励下颗粒物质的有效质量及耗散功率的研究

许聪慧 张国华 钱志恒 赵雪丹

引用本文:
Citation:

水平激励下颗粒物质的有效质量及耗散功率的研究

许聪慧, 张国华, 钱志恒, 赵雪丹

Effective mass spectrum and dissipation power of granular material under the horizontal and vertical excitation

Xu Cong-Hui, Zhang Guo-Hua, Qian Zhi-Heng, Zhao Xue-Dan
PDF
导出引用
  • 对颗粒物质的有效质量谱及耗散功率进行了数值研究,发现水平和垂直激励下颗粒体系的共振频率fg与体积模量k均随压强P呈分段幂律变化,在高压强下遵循fg∝P1/6,k∝P1/3的规律,在低压强下遵循fg∝P1/4,k∝P1/2的规律.同时,在水平和垂直振动下,颗粒体系品质因子的倒数1/Q随P的变化呈指数衰减.在特定频率和压强下,颗粒体系的平均耗散功率p随振动强度Γ的变化曲线上存在一个特征振动强度Γ*,当ΓΓ*时,颗粒体系表现出类固态行为,平均耗散功率p随振动强度Γ呈幂律标度,p∝Γα(2αΓ >Γ*时,颗粒体系表现出类液态行为,体系的平均耗散功率p随振动强度Γ呈线性变化.由此得到了水平激励下颗粒体系类固体类流体转变的Γ-P相图.
    In this paper, in order to explore the movement characteristics of granular system under the horizontal and vertical excitation, the effective mass spectrum and dissipation power of granular material are studied by numerical simulation. We use LIGGGHTS software to simulate a granular system consisting of 13340 dispersed particles in a cubic container. For the two different vibration directions of granular system (horizontal and vertical), we carry out a pressure unloading experiment in a pressure range from 1012.10 kPa to 8.66 kPa. It is found that under the horizontal and vertical excitation, the resonance frequency fg and volume modulus k of granular system satisfy piecewise power-law with the change of pressure P applied to the top surface. It follows the laws, that is, fg∝P1/6 and k∝P1/3 at low pressure and fg∝P1/4 and k∝P1/2 at high pressure. At the same time, according to the effective mass of the imaginary part, we can obtain the dissipative characteristics of the granular system. Under the horizontal and vertical excitation, the reciprocal of quality factor of granular matter, 1/Q, decreases exponentially with the change of pressure P. In the relaxation dynamics of the granular system, both the acceleration and the stress play a role similar to the role of temperature in the thermal system. In order to further study the influence of acceleration on solid-fluid-like transition of granular system, we measure the relationships between the dissipation power and the vibration intensity (1g-30g) under different pressures (8.66-1012.10 kPa), in the horizontal vibration (500 Hz). At the fixed frequency and pressure, there is a characteristic vibration intensity Γ* in the curve of the average power dissipation of granular system with vibration intensity Γ. When ΓΓ*, the granular system exhibits a solid-like behavior, and the variation of the average power dissipation with the change of vibration intensity Γ shows a power-law scaling, p∝Γα (2αΓ > Γ*, the granular system exhibits a liquid-like behavior, and the variation of the average power dissipation of granular system with the vibration intensity Γ changes into a linear fashion. Then, the phase diagram of transition from the solid-like phase to fluid-like phase, i.e., Γ-P phase diagram, in granular system under the horizontal excitation, is obtained in this paper.
      通信作者: 张国华, zhguohua@sas.ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11272048,11572178)资助的课题.
      Corresponding author: Zhang Guo-Hua, zhguohua@sas.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272048, 11572178)
    [1]

    Lu K Q, Liu J X 2004 Physics 33 629 (in Chinese)[陆坤权, 刘寄星2004物理33 629]

    [2]

    Sun Q, Jin F, Zhou G D 2013 Granular Mat. 15 119

    [3]

    Bi Z, Sun Q, Jin F, Zhang M 2011 Granular Mat. 13 503

    [4]

    Peyneau P E, Roux J N 2008 Phys. Rev. E 78 041307

    [5]

    Majmudar T S, Behringer R P 2005 Nature 435 1079

    [6]

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese)[孙其诚, 王光谦2008物理学报57 4667]

    [7]

    Zhou G D, Sun Q C 2013 Powder Technol. 239 115

    [8]

    Sun Q C, Wang G Q, Hu K H 2009 Prog. Nat. Sci. 19 523

    [9]

    Karimi K, Maloney C E 2011 Phys. Rev. Lett. 107 268001

    [10]

    Wortel G H, van Hecke M 2015 Phys. Rev. E 92 040201

    [11]

    Wang P P, Wang W J, Liu C S, Zhu Z G 2009 Rock Soil Mech. 30 (Supp.) 129(in Chinese)[汪盼盼, 王万景, 刘长松, 朱震刚2009岩土力学30 (增刊) 129]

    [12]

    Valenza J, Hsu C J, Ingale R, Gland N, Makse H A, Johnson D L 2009 Phys. Rev. E 80 051304

    [13]

    Hsu C J, Johnson D L, Ingale R A, Valenza J J, Gland N, Makse H A 2009 Phys. Rev. Lett. 102 058001

    [14]

    Valenza J, Johnson D L 2012 Phys. Rev. E 85 041302

    [15]

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502 (in Chinese)[彭政, 蒋亦民, 刘锐, 厚美瑛2013物理学报62 024502]

    [16]

    Ansari I H, Alam M 2016 Phys. Rev. E 93 052901

    [17]

    Eshuis P, van der Weele K, van deer Meer D, Lohse D 2005 Phys. Rev. Lett. 95 258001

    [18]

    Eshuis P, van der Weele K, van der Meer D, Bos R, Lohse D 2007 Phys. Fluids 19 123301

    [19]

    Garcimartín A, Pastor J M, Arévalo R, Maza D 2007 Eur. Phys. J. Spec. Top. 146 331

    [20]

    Saluña C, Pöschel T 2000 Eur. Phys. J. E 1 55

    [21]

    2015 Acta Phys. Sin. 64 044501 (in Chinese)[余田, 张国华, 孙其诚, 赵雪丹, 马文波2015物理学报64 044501]

    [22]

    Xu N 2011 Front. Phys. 6 109

    [23]

    Lastakowski H, Géminard J C, Vidal V 2015 Sci. Rep.-UK 5 13455

    [24]

    Goddard J D 1990 Proc. R. Soc. Lond. A 430 105

  • [1]

    Lu K Q, Liu J X 2004 Physics 33 629 (in Chinese)[陆坤权, 刘寄星2004物理33 629]

    [2]

    Sun Q, Jin F, Zhou G D 2013 Granular Mat. 15 119

    [3]

    Bi Z, Sun Q, Jin F, Zhang M 2011 Granular Mat. 13 503

    [4]

    Peyneau P E, Roux J N 2008 Phys. Rev. E 78 041307

    [5]

    Majmudar T S, Behringer R P 2005 Nature 435 1079

    [6]

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese)[孙其诚, 王光谦2008物理学报57 4667]

    [7]

    Zhou G D, Sun Q C 2013 Powder Technol. 239 115

    [8]

    Sun Q C, Wang G Q, Hu K H 2009 Prog. Nat. Sci. 19 523

    [9]

    Karimi K, Maloney C E 2011 Phys. Rev. Lett. 107 268001

    [10]

    Wortel G H, van Hecke M 2015 Phys. Rev. E 92 040201

    [11]

    Wang P P, Wang W J, Liu C S, Zhu Z G 2009 Rock Soil Mech. 30 (Supp.) 129(in Chinese)[汪盼盼, 王万景, 刘长松, 朱震刚2009岩土力学30 (增刊) 129]

    [12]

    Valenza J, Hsu C J, Ingale R, Gland N, Makse H A, Johnson D L 2009 Phys. Rev. E 80 051304

    [13]

    Hsu C J, Johnson D L, Ingale R A, Valenza J J, Gland N, Makse H A 2009 Phys. Rev. Lett. 102 058001

    [14]

    Valenza J, Johnson D L 2012 Phys. Rev. E 85 041302

    [15]

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502 (in Chinese)[彭政, 蒋亦民, 刘锐, 厚美瑛2013物理学报62 024502]

    [16]

    Ansari I H, Alam M 2016 Phys. Rev. E 93 052901

    [17]

    Eshuis P, van der Weele K, van deer Meer D, Lohse D 2005 Phys. Rev. Lett. 95 258001

    [18]

    Eshuis P, van der Weele K, van der Meer D, Bos R, Lohse D 2007 Phys. Fluids 19 123301

    [19]

    Garcimartín A, Pastor J M, Arévalo R, Maza D 2007 Eur. Phys. J. Spec. Top. 146 331

    [20]

    Saluña C, Pöschel T 2000 Eur. Phys. J. E 1 55

    [21]

    2015 Acta Phys. Sin. 64 044501 (in Chinese)[余田, 张国华, 孙其诚, 赵雪丹, 马文波2015物理学报64 044501]

    [22]

    Xu N 2011 Front. Phys. 6 109

    [23]

    Lastakowski H, Géminard J C, Vidal V 2015 Sci. Rep.-UK 5 13455

    [24]

    Goddard J D 1990 Proc. R. Soc. Lond. A 430 105

  • [1] 杜清馨, 孙其诚, 丁红胜, 张国华, 范彦丽, 安飞飞. 垂直振动下干湿颗粒样品的体积模量与耗散的研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220329
    [2] 于天林, 凡凤仙. 竖直振动激励下颗粒毛细上升行为研究. 物理学报, 2022, 71(10): 104501. doi: 10.7498/aps.71.20212333
    [3] 牛晓娜, 张国华, 孙其诚, 赵雪丹, 董远湘. 二维有摩擦颗粒体系振动态密度与玻色峰的研究. 物理学报, 2016, 65(3): 036301. doi: 10.7498/aps.65.036301
    [4] 余田, 张国华, 孙其诚, 赵雪丹, 马文波. 垂直振动激励下颗粒材料有效质量和耗散功率的研究. 物理学报, 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [5] 张富翁, 王立, 刘传平, 吴平. 竖直振动管中颗粒的上升运动. 物理学报, 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [6] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学. 物理学报, 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [7] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散. 物理学报, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [8] 彭亚晶, 张卓, 王勇, 刘小嵩. 振动颗粒物质“巴西果”分离效应实验和理论研究. 物理学报, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [9] 姜泽辉, 张峰, 郭波, 赵海发, 郑瑞华. 受振颗粒“毛细”系统中的对流与有序化. 物理学报, 2010, 59(8): 5581-5587. doi: 10.7498/aps.59.5581
    [10] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [11] 钟 杰, 彭 政, 吴耀宇, 史庆藩, 陆坤权, 厚美瑛. 二维颗粒流从稀疏态到密集态的临界转变. 物理学报, 2006, 55(12): 6691-6696. doi: 10.7498/aps.55.6691
    [12] 姜泽辉, 王运鹰, 吴 晶. 窄振动颗粒床中的运动模式. 物理学报, 2006, 55(9): 4748-4753. doi: 10.7498/aps.55.4748
    [13] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [14] 陆广成, 李增花, 左 维, 罗培燕. 热核物质中基态关联修正下的单核子势和核子有效质量. 物理学报, 2006, 55(1): 84-90. doi: 10.7498/aps.55.84
    [15] 蔡长英, 任中洲, 鞠国兴. 指数型变化有效质量的三维Schr?dinger方程的解析解. 物理学报, 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [16] 姜泽辉, 刘新影, 彭雅晶, 李建伟. 竖直振动颗粒床中的倍周期运动. 物理学报, 2005, 54(12): 5692-5698. doi: 10.7498/aps.54.5692
    [17] 姜泽辉, 李 斌, 赵海发, 王运鹰, 戴智斌. 竖直振动颗粒物厚层中冲击力分岔现象. 物理学报, 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [18] 额尔敦朝鲁, 李树深, 肖景林. 晶格热振动对准二维强耦合极化子有效质量的影响. 物理学报, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [19] 徐光磊, 胡国琦, 张训生, 鲍德松, 陈 唯, 厚美瑛, 陆坤权. 通道宽度和初始流量对颗粒稀疏流-密集流转变临界开口的影响. 物理学报, 2003, 52(4): 875-878. doi: 10.7498/aps.52.875
    [20] 姜泽辉, 陆坤权, 厚美瑛, 陈 唯, 陈相君. 振动颗粒混合物中的三明治式分离. 物理学报, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
计量
  • 文章访问数:  2969
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-25
  • 修回日期:  2016-09-05
  • 刊出日期:  2016-12-05

水平激励下颗粒物质的有效质量及耗散功率的研究

    基金项目: 国家自然科学基金(批准号:11272048,11572178)资助的课题.

摘要: 对颗粒物质的有效质量谱及耗散功率进行了数值研究,发现水平和垂直激励下颗粒体系的共振频率fg与体积模量k均随压强P呈分段幂律变化,在高压强下遵循fg∝P1/6,k∝P1/3的规律,在低压强下遵循fg∝P1/4,k∝P1/2的规律.同时,在水平和垂直振动下,颗粒体系品质因子的倒数1/Q随P的变化呈指数衰减.在特定频率和压强下,颗粒体系的平均耗散功率p随振动强度Γ的变化曲线上存在一个特征振动强度Γ*,当ΓΓ*时,颗粒体系表现出类固态行为,平均耗散功率p随振动强度Γ呈幂律标度,p∝Γα(2αΓ >Γ*时,颗粒体系表现出类液态行为,体系的平均耗散功率p随振动强度Γ呈线性变化.由此得到了水平激励下颗粒体系类固体类流体转变的Γ-P相图.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回