搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直振动下干湿颗粒样品的体积模量与耗散

杜清馨 孙其诚 丁红胜 张国华 范彦丽 安飞飞

引用本文:
Citation:

垂直振动下干湿颗粒样品的体积模量与耗散

杜清馨, 孙其诚, 丁红胜, 张国华, 范彦丽, 安飞飞

Experimental study on bulk modulus and dissipation of dry and wet granular samples under vertical vibration

Du Qing-Xin, Sun Qi-Cheng, Ding Hong-Sheng, Zhang Guo-Hua, Fan Yan-Li, An Fei-Fei
PDF
HTML
导出引用
  • 研究了垂直振动条件下, 干、湿玻璃珠样品的体积模量和相对耗散. 实验发现: 1)在低饱和度下, 干、湿玻璃珠样品的体积模量随压强幂律变化, 与基于赫兹接触势的有效介质理论预言的1/3幂律关系接近; 加入少量液体会增加体积模量. 同一压强和液体含量下, 随着液体黏度的增大, 体积模量随之增加. 基于赫兹接触力学, 提出了有效弹性网络模型来阐述湿玻璃珠样品体积模量的增加机制. 2)干、湿玻璃珠样品的相对耗散随压强幂律降低, 湿玻璃珠样品的相对耗散与液体黏度呈正比. 3)随着应变幅值的增大, 湿玻璃珠样品表现出类似干玻璃珠样品的软化行为, 且液体黏度会抑制玻璃珠样品的软化行为.
    Dry granular materials are composed of a dense random packing of macroscopic grains. As a small amount of liquid is added to granular samples, the liquid bridge forces, i.e. the forces between liquid and the grains, have an influence on the mechanical properties of wet granular material, and some of these properties are quite different from those of dry granular materials. In this work, by measuring the acceleration of the sample chamber and the force exerted on it by the shaker, the variations of bulk modulus and energy dissipation of both dry and wet glass bead samples with pressure and viscosity under vertical vibration are studied. The results are shown below. 1) Under low saturation, the bulk modulus of dry and wet glass bead sample are both described by a power law scaling law with pressure, which is close to the power law relationship predicted by the efficient medium theory on the basis of Hertz contact potential. A small amount of liquid can increase the bulk modulus of glass bead sample. At the same pressure and liquid content, the bulk modulus of wet glass bead sample increases with liquid viscosity increasing. Based on Hertzian contact mechanics, an efficient elastic network model is proposed to illustrate the mechanism of increasing bulk modulus of wet glass bead samples. 2) The energy dissipation of dry and wet glass bead sample decrease following the power law of pressure, and the energy dissipation of wet glass bead samples is proportional to the kinematic viscosity of liquid. 3) With the increase of strain amplitude, the softening behavior of the wet glass bead sample is similar to that of the dry glass bead sample, when the strain amplitude is higher than the strain threshold value. The kinematic viscosity of liquid inhibits the softening behavior of glass bead sample.
      通信作者: 孙其诚, qcsun@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 91634202, 11972212)资助的课题.
      Corresponding author: Sun Qi-Cheng, qcsun@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91634202, 11972212).
    [1]

    Makse H A, Gland N, Johnson D L, Schwartz L 2004 Phys. Rev. E 70 061302Google Scholar

    [2]

    Lemrich L, Carmeliet J, Johnson P A 2017 Phys. Rev. E 96 062901Google Scholar

    [3]

    Somfai E, Roux J N, Snoeijer J H 2005 Phys. Rev. E 72 021301Google Scholar

    [4]

    Zimmer M A, Prasad M, Mavko G, Nur A 2007 Geophysics 72 E1Google Scholar

    [5]

    Zimmer M A, Prasad M, Mavko G, Nur A 2007 Geophysics 72 E15Google Scholar

    [6]

    Badetti M, Fall A, Hautemayou D 2018 J. Rheol. 62 1175Google Scholar

    [7]

    唐瀚玉, 王娜, 吴学邦 2018 物理学报 67 206402Google Scholar

    Tang H Y, Wang N, Wu X B 2018 Acta Phys. Sin. 67 206402Google Scholar

    [8]

    Fall A, Weber B, Pakpour M 2014 Phys. Rev. Lett. 112 175502Google Scholar

    [9]

    Wang W J, Zhu Z G 2008 EPL 82 24004Google Scholar

    [10]

    Brunet T, Jia X, Mills P 2008 Phys. Rev. Lett. 101 138001Google Scholar

    [11]

    Kovalcinova L, Karmakar S, Schaber M 2018 Phys. Rev. E 98 032905Google Scholar

    [12]

    Johnson P A, Jia X 2005 Nature 437 871Google Scholar

    [13]

    Reichhardt C J O, Lopatina L M, Jia X, Johnson P A 2015 Phys. Rev. E 92 022203Google Scholar

    [14]

    Brum J, Gennisson J L, Fink M 2019 Phys. Rev. E 99 042902Google Scholar

    [15]

    Griffiths S, Rescaglio A, Melo F 2010 Ultrasonics 50 139Google Scholar

    [16]

    Liao C C, Hsiau S S 2010 Powder Technol. 197 222Google Scholar

    [17]

    Fournier Z, Geromichalos D, Herminghaus S 2005 J. Phys. Condens. Matter 17 S477Google Scholar

    [18]

    Pilbeam C C, Vaišnys J R 1973 J. Geophys. Res. 78 810Google Scholar

    [19]

    Liu X, Greenhalgh S, Zhou B 2018 Geophys. J. Int. 212 1255Google Scholar

    [20]

    Li D, Wei J, Di B 2017 J. Geophys. Eng. 14 1072Google Scholar

    [21]

    Fawad M, Mondol N H, Jahren J 2011 Geophys. Prospect. 59 697Google Scholar

    [22]

    Tittmann B, Abdel-Gawad M, Salvado C 1981 Proc. Lunar Planet. Sci. 12B 1737

    [23]

    Aliasgari M, Maleki-Jirsaraei N, Rouhani S 2021 EPJ Web Conf. 249 08003Google Scholar

    [24]

    Tong L H, Qi B, Ding H 2020 Int. J. Mech. Sci. 171 105373Google Scholar

  • 图 1  (a)实验装置示意图; (b)湿颗粒体系中的液桥形态示意图

    Fig. 1.  (a) Schematic diagram of the experimental device; (b) pendular bridges in wet glass bead sample.

    图 2  频率$ f = 300\;{\text{Hz}} $、位移幅值$ A = 565\;{\text{nm}} $的正弦加速度信号(a)及其频谱图(b)

    Fig. 2.  (a) Sinusoidal acceleration signal with frequency$ f = 300\;{\text{Hz}} $ and displacement amplitude$ A = 565\;{\text{nm}} $ and (b) its spectrum diagram.

    图 3  不同运动黏度$ {\nu _{{\text{lig}}}} $下, 玻璃珠样品的体积模量K随压强p的变化(液体含量$ w = 1 $%)

    Fig. 3.  Variation of bulk modulus K of glass bead samples with pressure p under different kinematic viscosity $ {\nu _{{\text{lig}}}} $ (liquid content$ w = 1 $%).

    图 4  不同压强 p下, 湿玻璃珠样品的体积模量K随运动黏度$ {\nu _{{\text{lig}}}} $的变化(液体含量$ w = 1 $%)

    Fig. 4.  Variation of bulk modulus K with kinematic viscosity $ {\nu _{{\text{lig}}}} $ under different pressure p (liquid content$ w = 1 $%).

    图 5  不同运动黏度$ {\nu _{{\text{lig}}}} $下, 玻璃珠样品相对能耗$ \tan \phi $随压强 p 的变化(液体含量$ w = 1 $%)

    Fig. 5.  Variation of relative energy dissipation $ \tan \phi $ with pressure p under different kinematic viscosity (liquid content$ w = 1 $%).

    图 6  不同运动黏度$ {\nu _{{\text{lig}}}} $下, 湿玻璃珠样品液桥的断裂和形成而产生的相对能耗$ \tan {\phi _{{\text{lig}}}} $随压强 p 的变化(液体含量$ w = 1 $%)

    Fig. 6.  Variation of relative energy dissipation by rupture and reformation of the capillary bridges $ \tan {\phi _{{\text{lig}}}} $ with pressure p under different kinematic viscosity $ {\nu _{{\text{lig}}}} $(liquid content$ w = 1 $%).

    图 7  不同压强p下, 湿玻璃珠样品的相对能耗$ \tan \phi $随运动黏度$ {\nu _{{\text{lig}}}} $的变化(液体含量$ w = 1$%)

    Fig. 7.  Variation of relative energy dissipation $ \tan \phi $ with kinematic viscosity $ {\nu _{{\text{lig}}}} $ under different pressure p (liquid content$ w = 1 $%).

    图 8  不同运动黏度$ {\nu _{{\text{lig}}}} $下, 玻璃珠样品的归一化体积模量变化${\Delta K}/K_0$随应变幅值$ \varepsilon $的变化(液体含量$ w = 1 $%). 虚线对应近似的应变阈值, 即当应变幅值低于阈值时, 系统动态响应是线性的, ${{{\Delta K}/K}_0} = 0$, 与振幅无关; 在高应变幅值下, ${{{\Delta K}/K}_0} < 0$, 材料软化

    Fig. 8.  Variation of the normalized bulk modulus change $ {{\Delta K} \mathord{\left/ {\vphantom {{\Delta K} {{K_0}}}} \right. } {{K_0}}} $ with strain amplitude $ \varepsilon $ under different kinematic viscosity $ {\nu _{{\text{lig}}}} $ (liquid content $ w = 1 $%). The dashed line indicates that there is an approximate strain threshold, when the strain amplitude is lower than the threshold value, the dynamic response of the system is linear, ${\Delta K}/K_0 = 0$, and independent of the amplitude. At high strain amplitude, ${{{\Delta K}/K}_0} < 0$, the system is softened.

    表 1  不同运动黏度下, 玻璃珠样品体积模量和相对耗散随压强变化的幂指数

    Table 1.  Power law exponents of bulk modulus and energy dissipation with pressure and kinematic viscosity.

    运动黏度$ {\nu _{{\text{lig}}}} $/cst
    0100100030005000
    体积模量随压强
    变化的幂指数a
    0.3960.3700.3460.3330.327
    相对耗散随压强
    变化的幂指数b
    –0.327–0.395–0.429–0.407–0.415
    下载: 导出CSV
  • [1]

    Makse H A, Gland N, Johnson D L, Schwartz L 2004 Phys. Rev. E 70 061302Google Scholar

    [2]

    Lemrich L, Carmeliet J, Johnson P A 2017 Phys. Rev. E 96 062901Google Scholar

    [3]

    Somfai E, Roux J N, Snoeijer J H 2005 Phys. Rev. E 72 021301Google Scholar

    [4]

    Zimmer M A, Prasad M, Mavko G, Nur A 2007 Geophysics 72 E1Google Scholar

    [5]

    Zimmer M A, Prasad M, Mavko G, Nur A 2007 Geophysics 72 E15Google Scholar

    [6]

    Badetti M, Fall A, Hautemayou D 2018 J. Rheol. 62 1175Google Scholar

    [7]

    唐瀚玉, 王娜, 吴学邦 2018 物理学报 67 206402Google Scholar

    Tang H Y, Wang N, Wu X B 2018 Acta Phys. Sin. 67 206402Google Scholar

    [8]

    Fall A, Weber B, Pakpour M 2014 Phys. Rev. Lett. 112 175502Google Scholar

    [9]

    Wang W J, Zhu Z G 2008 EPL 82 24004Google Scholar

    [10]

    Brunet T, Jia X, Mills P 2008 Phys. Rev. Lett. 101 138001Google Scholar

    [11]

    Kovalcinova L, Karmakar S, Schaber M 2018 Phys. Rev. E 98 032905Google Scholar

    [12]

    Johnson P A, Jia X 2005 Nature 437 871Google Scholar

    [13]

    Reichhardt C J O, Lopatina L M, Jia X, Johnson P A 2015 Phys. Rev. E 92 022203Google Scholar

    [14]

    Brum J, Gennisson J L, Fink M 2019 Phys. Rev. E 99 042902Google Scholar

    [15]

    Griffiths S, Rescaglio A, Melo F 2010 Ultrasonics 50 139Google Scholar

    [16]

    Liao C C, Hsiau S S 2010 Powder Technol. 197 222Google Scholar

    [17]

    Fournier Z, Geromichalos D, Herminghaus S 2005 J. Phys. Condens. Matter 17 S477Google Scholar

    [18]

    Pilbeam C C, Vaišnys J R 1973 J. Geophys. Res. 78 810Google Scholar

    [19]

    Liu X, Greenhalgh S, Zhou B 2018 Geophys. J. Int. 212 1255Google Scholar

    [20]

    Li D, Wei J, Di B 2017 J. Geophys. Eng. 14 1072Google Scholar

    [21]

    Fawad M, Mondol N H, Jahren J 2011 Geophys. Prospect. 59 697Google Scholar

    [22]

    Tittmann B, Abdel-Gawad M, Salvado C 1981 Proc. Lunar Planet. Sci. 12B 1737

    [23]

    Aliasgari M, Maleki-Jirsaraei N, Rouhani S 2021 EPJ Web Conf. 249 08003Google Scholar

    [24]

    Tong L H, Qi B, Ding H 2020 Int. J. Mech. Sci. 171 105373Google Scholar

  • [1] 王世伟, 朱朋哲, 李瑞. 界面羟基对碳纳米管摩擦行为和能量耗散的影响. 物理学报, 2018, 67(7): 076101. doi: 10.7498/aps.67.20180311
    [2] 唐瀚玉, 王娜, 吴学邦, 刘长松. 剪切振动下湿颗粒的力学谱. 物理学报, 2018, 67(20): 206402. doi: 10.7498/aps.67.20180966
    [3] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究. 物理学报, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [4] 朱攀丞, 边庆勇, 李晋斌. 欧拉圆盘不同能量耗散机理之间的关联. 物理学报, 2015, 64(17): 174501. doi: 10.7498/aps.64.174501
    [5] 余田, 张国华, 孙其诚, 赵雪丹, 马文波. 垂直振动激励下颗粒材料有效质量和耗散功率的研究. 物理学报, 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [6] 何菲菲, 彭政, 颜细平, 蒋亦民. 振动颗粒混合物中的周期性分聚现象与能量耗散. 物理学报, 2015, 64(13): 134503. doi: 10.7498/aps.64.134503
    [7] 刘中淼, 孙其诚, 宋世雄, 史庆藩. 准静态颗粒流流动规律的热力学分析. 物理学报, 2014, 63(3): 034702. doi: 10.7498/aps.63.034702
    [8] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究. 物理学报, 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [9] 韩红, 姜泽辉, 李翛然, 吕晶, 张睿, 任杰骥. 器壁滑动摩擦力对受振颗粒体系中冲击力倍周期分岔过程的影响. 物理学报, 2013, 62(11): 114501. doi: 10.7498/aps.62.114501
    [10] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散. 物理学报, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [11] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究. 物理学报, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [12] 孙其诚, 金峰, 王光谦, 张国华. 二维颗粒体系单轴压缩形成的力链结构. 物理学报, 2010, 59(1): 30-37. doi: 10.7498/aps.59.30
    [13] 孔维姝, 胡林, 张兴刚, 岳国联. 颗粒堆的体积分数与制备流量关系的实验研究. 物理学报, 2010, 59(1): 411-416. doi: 10.7498/aps.59.411
    [14] 孙其诚, 王光谦. 静态堆积颗粒中的力链分布. 物理学报, 2008, 57(8): 4667-4674. doi: 10.7498/aps.57.4667
    [15] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [16] 孔维姝, 胡 林, 杜学能, 张兴刚, 王伟明, 吴 宇. 用探测棒研究颗粒堆中的最大静摩擦力. 物理学报, 2007, 56(4): 2318-2322. doi: 10.7498/aps.56.2318
    [17] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [18] 袁常青, 赵同军, 王永宏, 展 永. 有限体系能量耗散运动的功率谱分析. 物理学报, 2005, 54(12): 5602-5608. doi: 10.7498/aps.54.5602
    [19] 姜泽辉, 李 斌, 赵海发, 王运鹰, 戴智斌. 竖直振动颗粒物厚层中冲击力分岔现象. 物理学报, 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [20] 胡 林, 杨 平, 徐 亭, 江 阳, 须海江, 龙 为, 杨昌顺, 张 弢, 陆坤权. 颗粒物质中圆棒受到的静摩擦力. 物理学报, 2003, 52(4): 879-882. doi: 10.7498/aps.52.879
计量
  • 文章访问数:  3120
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 修回日期:  2022-05-11
  • 上网日期:  2022-08-30
  • 刊出日期:  2022-09-20

/

返回文章
返回