搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿颗粒堆力学特性的离散元法模拟研究

赵啦啦 赵跃民 刘初升 李珺

引用本文:
Citation:

湿颗粒堆力学特性的离散元法模拟研究

赵啦啦, 赵跃民, 刘初升, 李珺

Discrete element simulation of mechanical properties of wet granular pile

Zhao La-La, Zhao Yue-Min, Liu Chu-Sheng, Li Jun
PDF
导出引用
  • 利用基于线性黏聚接触模型的离散元法对不同颗粒系统的堆积过程进行了数值模拟研究,分析了颗粒形状和湿颗粒间液桥力对颗粒堆积形态的影响机理,获得了球形和块状湿颗粒堆基底表面所受的法向力以及堆中颗粒间的法向力和切向力“中心凹陷”式的分布规律,讨论了颗粒形状和黏聚能量密度对基底表面作用力和颗粒间作用力的影响. 研究结果表明,颗粒形状和液桥力对颗粒堆的堆积形态具有显著的影响. 堆积角随着黏聚能量密度的增加而增大,并且相同条件下的块状颗粒堆积角大于球形颗粒. 颗粒形状和黏聚能量密度对基底表面所受作用力和堆中颗粒间的作用力变化及最大幅值均有影响作用. 当黏聚能量密度值逐渐增大时,颗粒堆的作用力最大幅值均逐渐增大,并且块状颗粒堆的作用力最大幅值大于球形颗粒堆. 当黏聚能量密度值过大时,颗粒堆力学特性更加复杂,液桥力对颗粒堆积特性的影响作用大于颗粒形状的影响.
    Discrete element method (DEM) simulations for pile-up processes of different particle systems were performed based on linear cohesion contact model. Effects of particle shape and liquid bridge force between wet particles on the piling form were analyzed. The significant central dip profiles of normal force acting on the base surface, normal force and tangential force between particles were predicted. Effects of particle shape and cohesion energy density on the forces on the base surface and inter-particles were described. The results show that particle shape and the liquid bridge force have significant impacts on the piling form. With the increase of the cohesion energy density the angle of repose for each granular pile increases. But the angle of repose of cubical particles is bigger than that of spherical particles under the same condition. Particle shape and the liquid bridge force also significantly affect the change and the maximum amplitude of the forces acting on the base surface and the forces between the particles. The maximum amplitude of the forces increases with the increase of the cohesion energy density, and the value of the maximum force on cubical particles is bigger than that on spherical particles. When the value of cohesion energy density is very large, the mechanical properties of granular piles become more complicated, so that the liquid bridge force has a larger impact on the packing characteristic of particles than the impact on particle shape.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号:2012CB214900)、国家自然科学基金(批准号:51134022,51221462,51204181)、高等学校博士学科点专项科研基金(批准号:20110095120004)、中国博士后科学基金(批准号:20110491485,2013T60576)和中央高校基本科研业务费专项资金(批准号:2011QNA10)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China(Grant No. 2012CB214900), the National Natural Science Foundation of China (Grant Nos. 51134022, 51221462, 51204181), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110095120004), the China Postdoctoral Science Foundation (Grant Nos. 20110491485, 2013T60576), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2011QNA10).
    [1]

    Li Y Y, Xia W, Zhou Z Y, He K J, Zhong W Z, Wu Y B 2010 Chin. Phys. B 19 024601

    [2]

    Wittmer J P, Claudin P, Cates M E, Bouchaud J P 1996 Nature 382 336

    [3]

    Xie X M, Jiang Y M, Wang H Y, Cao X P, Liu Y 2003 Acta Phys. Sin. 52 2194 (in Chinese) [谢晓明, 蒋亦民, 王焕友, 曹晓平, 刘佑 2003 物理学报 52 2194]

    [4]

    Geng J, Longhi E, Rehringer R P, Howell D W 2001 Phys. Rev. E 64 060301

    [5]

    Silbert L E, Grest G S, Landy J W 2002 Phys. Rev. E 66 061303

    [6]

    Sun Q C, Wang G Q Acta Phys. Sin. 57 4667 (in Chinese) [孙其诚, 王光谦 2008 物理学报 57 4667]

    [7]

    Zhao Y Z, Jiang M Q, Xu P, Zheng J X Acta Phys. Sin. 58 1819 (in Chinese) [赵永志, 江茂强, 徐 平, 郑津洋 2009 物理学报 58 1819]

    [8]

    Zhang Q W, Jiang Y M, Zuo J, Zheng H P, Peng Z, Fu L P, Jiang L 2010 Chinese Sci. Bull 55 316 (in Chinese) [张庆武, 蒋亦民, 左静, 郑鹤鹏, 彭郑, 符力平, 蒋礼 2010 科学通报 55 316]

    [9]

    Carlevaro C M, Pugnaloni L A 2012 Eur. Phys. J. E 35 12044

    [10]

    Matutti H G, Luding S, Herrmann H J 2000 Powder Tchnol. 109 278

    [11]

    Cleary P W 2009 Eng Computation 26 698

    [12]

    Cleary P W 2010 Particuology 8 106

    [13]

    Mitarai N, Nori F 2006 Adv. Phys. 55 1

    [14]

    Zuriguel I, Mullin T 2008 Proc. R. Soc. A 464 99

    [15]

    Zhou C, Ooi J Y 2009 Mech. Mater. 41 707

    [16]

    Samadani A, Kudrolli A 2001 Phy. Rev. E 64 051301

    [17]

    Zhu H P, Zhou Z Y, Yang R Y, Yu A B 2008 Chem. Eng. Sci. 63 5728

    [18]

    Zhao J, Li S X 2008 Chin. Phys. Lett. 25 4034

    [19]

    Li S X, Zhao J, Zhou X 2008 Chin. Phys. Lett. 25 1724

    [20]

    Langston P A, Awamleh M A, Fraige F Y, Asmar B N 2004 Chemical Engineering Science 59 425

    [21]

    Zhao L L, Liu C S, Yan J X, Xu Z P 2010 Acta Phys. Sin. 59 1874 (in Chinese) [赵啦啦, 刘初升, 闫俊霞, 徐志鹏 2010 物理学报 59 1874]

    [22]

    Zhao L L, Liu C S, Yan J X, Jiao X W, Zhu Y 2010 Acta Phys. Sin. 59 2582 (in Chinese) [赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳 2010 物理学报 59 2582]

    [23]

    Gao H L, Chen Y C, Zhao Y Z, Zheng J Y 2011 Acta Phys. Sin. 60 12 (in Chinese) [高红利, 陈友川, 赵永志, 郑津洋 2011 物理学报 60 12]

    [24]

    Zhao Y Z, Cheng Y 2008 Acta Phys. Sin. 57 322 (in Chinese) [赵永志, 程易 2008 物理学报 57 322]

    [25]

    Chen X M 2001 M. E. Dissertation (Xuzhou: China University of Mining & Technology) (in Chinese) [陈惜明 2001 硕士学位论文(徐州: 中国矿业大学)]

    [26]

    Wang K 2012 M. E. Dissertation (Xuzhou: China University of Mining & Technology) (in Chinese) [王可 2012 硕士学位论文(徐州: 中国矿业大学)]

  • [1]

    Li Y Y, Xia W, Zhou Z Y, He K J, Zhong W Z, Wu Y B 2010 Chin. Phys. B 19 024601

    [2]

    Wittmer J P, Claudin P, Cates M E, Bouchaud J P 1996 Nature 382 336

    [3]

    Xie X M, Jiang Y M, Wang H Y, Cao X P, Liu Y 2003 Acta Phys. Sin. 52 2194 (in Chinese) [谢晓明, 蒋亦民, 王焕友, 曹晓平, 刘佑 2003 物理学报 52 2194]

    [4]

    Geng J, Longhi E, Rehringer R P, Howell D W 2001 Phys. Rev. E 64 060301

    [5]

    Silbert L E, Grest G S, Landy J W 2002 Phys. Rev. E 66 061303

    [6]

    Sun Q C, Wang G Q Acta Phys. Sin. 57 4667 (in Chinese) [孙其诚, 王光谦 2008 物理学报 57 4667]

    [7]

    Zhao Y Z, Jiang M Q, Xu P, Zheng J X Acta Phys. Sin. 58 1819 (in Chinese) [赵永志, 江茂强, 徐 平, 郑津洋 2009 物理学报 58 1819]

    [8]

    Zhang Q W, Jiang Y M, Zuo J, Zheng H P, Peng Z, Fu L P, Jiang L 2010 Chinese Sci. Bull 55 316 (in Chinese) [张庆武, 蒋亦民, 左静, 郑鹤鹏, 彭郑, 符力平, 蒋礼 2010 科学通报 55 316]

    [9]

    Carlevaro C M, Pugnaloni L A 2012 Eur. Phys. J. E 35 12044

    [10]

    Matutti H G, Luding S, Herrmann H J 2000 Powder Tchnol. 109 278

    [11]

    Cleary P W 2009 Eng Computation 26 698

    [12]

    Cleary P W 2010 Particuology 8 106

    [13]

    Mitarai N, Nori F 2006 Adv. Phys. 55 1

    [14]

    Zuriguel I, Mullin T 2008 Proc. R. Soc. A 464 99

    [15]

    Zhou C, Ooi J Y 2009 Mech. Mater. 41 707

    [16]

    Samadani A, Kudrolli A 2001 Phy. Rev. E 64 051301

    [17]

    Zhu H P, Zhou Z Y, Yang R Y, Yu A B 2008 Chem. Eng. Sci. 63 5728

    [18]

    Zhao J, Li S X 2008 Chin. Phys. Lett. 25 4034

    [19]

    Li S X, Zhao J, Zhou X 2008 Chin. Phys. Lett. 25 1724

    [20]

    Langston P A, Awamleh M A, Fraige F Y, Asmar B N 2004 Chemical Engineering Science 59 425

    [21]

    Zhao L L, Liu C S, Yan J X, Xu Z P 2010 Acta Phys. Sin. 59 1874 (in Chinese) [赵啦啦, 刘初升, 闫俊霞, 徐志鹏 2010 物理学报 59 1874]

    [22]

    Zhao L L, Liu C S, Yan J X, Jiao X W, Zhu Y 2010 Acta Phys. Sin. 59 2582 (in Chinese) [赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳 2010 物理学报 59 2582]

    [23]

    Gao H L, Chen Y C, Zhao Y Z, Zheng J Y 2011 Acta Phys. Sin. 60 12 (in Chinese) [高红利, 陈友川, 赵永志, 郑津洋 2011 物理学报 60 12]

    [24]

    Zhao Y Z, Cheng Y 2008 Acta Phys. Sin. 57 322 (in Chinese) [赵永志, 程易 2008 物理学报 57 322]

    [25]

    Chen X M 2001 M. E. Dissertation (Xuzhou: China University of Mining & Technology) (in Chinese) [陈惜明 2001 硕士学位论文(徐州: 中国矿业大学)]

    [26]

    Wang K 2012 M. E. Dissertation (Xuzhou: China University of Mining & Technology) (in Chinese) [王可 2012 硕士学位论文(徐州: 中国矿业大学)]

  • [1] 杜清馨, 孙其诚, 丁红胜, 张国华, 范彦丽, 安飞飞. 垂直振动下干湿颗粒样品的体积模量与耗散. 物理学报, 2022, 71(18): 184501. doi: 10.7498/aps.71.20220329
    [2] 成浩, 韩培锋, 苏有文. 基于离散元方法的松散体滑动堆积特性 及影响因素分析. 物理学报, 2020, 69(16): 164501. doi: 10.7498/aps.69.20200223
    [3] 唐瀚玉, 王娜, 吴学邦, 刘长松. 剪切振动下湿颗粒的力学谱. 物理学报, 2018, 67(20): 206402. doi: 10.7498/aps.67.20180966
    [4] 王嗣强, 季顺迎. 基于超二次曲面的颗粒材料缓冲性能离散元分析. 物理学报, 2018, 67(9): 094501. doi: 10.7498/aps.67.20172549
    [5] 焦杨, 章新喜, 孔凡成, 刘海顺. 湿颗粒聚团碰撞解聚过程的离散元法模拟. 物理学报, 2015, 64(15): 154501. doi: 10.7498/aps.64.154501
    [6] 李树忱, 平洋, 李术才, 寇强, 马腾飞, 冯丙阳. 基于流形覆盖的岩体宏细观破裂的颗粒离散元法. 物理学报, 2014, 63(5): 050202. doi: 10.7498/aps.63.050202
    [7] 张富翁, 王立, 刘传平, 吴平. 竖直振动管中颗粒的上升运动. 物理学报, 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [8] 吴迪平, 李星祥, 秦勤, 管奔, 臧勇. 离散颗粒层被横向推移过程中的力学行为研究. 物理学报, 2014, 63(9): 098201. doi: 10.7498/aps.63.098201
    [9] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [10] 高红利, 陈友川, 赵永志, 郑津洋. 薄滚筒内二元湿颗粒体系混合行为的离散单元模拟研究. 物理学报, 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [11] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [12] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [13] 戴兵, 罗向东, 王亚伟. 椭圆截面非球形颗粒群的多重光散射. 物理学报, 2009, 58(6): 3864-3869. doi: 10.7498/aps.58.3864
    [14] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究. 物理学报, 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [15] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 粉末材料堆积的物理模型与仿真系统. 物理学报, 2009, 58(13): 21-S28. doi: 10.7498/aps.58.21
    [16] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 颗粒离散元模拟中的阻尼系数标定. 物理学报, 2009, 58(8): 5155-5161. doi: 10.7498/aps.58.5155
    [17] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟. 物理学报, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [18] 苗天德, 宜晨虹, 齐艳丽, 慕青松, 刘 源. 集中力作用下球形颗粒六角密排堆积体的传力研究. 物理学报, 2007, 56(8): 4713-4721. doi: 10.7498/aps.56.4713
    [19] 孔维姝, 胡 林, 杜学能, 张兴刚, 王伟明, 吴 宇. 用探测棒研究颗粒堆中的最大静摩擦力. 物理学报, 2007, 56(4): 2318-2322. doi: 10.7498/aps.56.2318
    [20] 许曼华, 魏铭鉴. 非球形颗粒形散函数的计算方法. 物理学报, 1997, 46(12): 2389-2393. doi: 10.7498/aps.46.2389
计量
  • 文章访问数:  6930
  • PDF下载量:  1986
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-15
  • 修回日期:  2013-11-03
  • 刊出日期:  2014-02-05

/

返回文章
返回