搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿颗粒聚团碰撞解聚过程的离散元法模拟

焦杨 章新喜 孔凡成 刘海顺

引用本文:
Citation:

湿颗粒聚团碰撞解聚过程的离散元法模拟

焦杨, 章新喜, 孔凡成, 刘海顺

Discrete element simulation of impact disaggregation for wet granule agglomerate

Jiao Yang, Zhang Xin-Xi, Kong Fan-Cheng, Liu Hair-Shun
PDF
导出引用
  • 基于线性接触模型、库仑滑移接触模型以及平行黏结三种接触模型的组合, 利用离散元法对包衣结构的湿颗粒聚团与壁面碰撞解聚的物理过程进行了数值模拟, 研究了碰撞过程中湿颗粒聚团解聚模式、解聚过程中聚团内各颗粒的速度变化以及颗粒间液桥断裂的规律, 分析了聚团的碰撞速度、黏附小颗粒的重力以及中心大颗粒的旋转对聚团解聚的影响. 研究发现: 聚团的碰撞解聚呈现出碰撞式、重力-碰撞式和剪切-碰撞式三种解聚模式. 湿颗粒聚团与壁面的碰撞打破了聚团内颗粒速度的一致性, 颗粒间出现相对运动而使颗粒间的液桥发生拉伸断裂. 液桥的断裂由聚团的碰撞点向外、由底部向上、由内层向外扩展. 聚团内液桥的断裂经历了缓慢断裂、快速断裂和完全断裂三个阶段. 碰撞速度越大, 黏附的小颗粒质量越大、大颗粒的转速越高, 湿颗粒聚团的缓慢断裂阶段越短暂且解聚程度越高. 模拟结果和实验符合.
    Based on the combination of linear contact model, Coulomb slip contact model and parallel bond contact model, a discret element model (DEM) of wet granule agglomerates with coating structure is constructed. Disaggregation processes of wet agglomerates in impacting to a horizontal plate are performed by applying particle flow code (PFC). Three failure patterns are obtained corresponding to those in experiment. The variation of velocities and rupture characteristics of liquid bridge in disaggregation process are investigated. Effects of impact velocity, gravity of adhered granules, and rotation of core granule are analyzed. DEM simulations show that there are three disaggregation patterns in the coating structure of agglomerates: impact disaggregation, gravity-impact disaggregation and shear-impact disaggregation, depending on the size of primary particles and the rotation of the core granules. With the enlargement of size, gravity plays an increasingly important role and the impact disaggregation pattern shifts to gravity-impact disaggregation. The rotation of core can generate a shear force to separate the fine and disaggregation pattern to turn to shear-impact disaggregation. Impacting results in a heterogeneous distribution of granule velocities and a tendency of relative movement in agglomerates. Relative movement will bring about the stretch of liquid bridge between granules. If the maximum separation distance of wet granules exceeds the rupture distance of liquid bridge, disaggregation happens. The ruptures of liquid bridge start from impact point and expand to outward, from bottom to up, from inside to outside in coating agglomeration. It is found that the rupture of liquid bridge needs time for accumulation and goes through three stages termed as slow rupture stage, quick rupture stage and entire rupture stage. With the increase of impact velocity, particle gravity, and rotating speed of core granules, disaggregation processes of wet granule agglomerates become fast and thorough. Impact velocity plays a primary role in disaggregation. DEM simulations are consistent with the experimental results.
    • 基金项目: 自然科学基金江苏省基础研究计划(批准号: KB20141124)资助的课题.
    • Funds: Project supported by the Natural Science Foundation Research of Jiangsu Province, China (Grant No. BK20141124).
    [1]

    Fu J S, Cheong Y S, Adams M J, Reynolds G K 2004 Powder Technology 140 24

    [2]

    Jinsheng F, Gavin K R, Michael J A 2005 Chemical Engineering Science 60 4005

    [3]

    Gao H L, Chen Y C, Zhao Y Z, Zhen J Y 2011 Acta Phys. Sin. 60 124501 (in Chinese) [高红利, 陈友川, 赵永志, 郑津洋 2011 物理学报 60 124501]

    [4]

    Zhao L L, Zhao Y M, Liu C S, Li J 2014 Acta Phys. Sin. 63 034501 (in Chinese) [赵啦啦, 赵跃民, 刘初升, 李珺 2014 物理学报 63 034501]

    [5]

    Radl S, Kalvoda E, Glasser B J, Khinast J G 2010 Powder Technology 200 171

    [6]

    Zhu R R, Zhu W B, Xing L C, Sun Q Q 2011 Powder Technology 210 73

    [7]

    He Y, Peng W, Wang T, Yan S 2014 Mathematical Problems in Engineering 31 568

    [8]

    Thornton C, Liu L 2004 Powder Technology 143 110

    [9]

    Sergiy A, Manoj K, Jurgen T 2006 Chemical Engineering and Processing 45 838

    [10]

    Mishra B K, Thornton C 2001 International Journal of Mineral Processing 61 225

    [11]

    Liu L, Kafui K D, Thornton C 2010 Powder Technology 199 189

    [12]

    Xu Y, Sun Q C, Zhang L,Huang W B 2003 Advanced in Mechanics 33 253 (in Chinese) [徐泳,孙其诚,张凌,黄文彬 2003 力学进展 33 253]

    [13]

    Christopher D, Michael J 2000 Langmuir 16 9396

    [14]

    Hotta K, Taked A K, Iinoya K 1974 Powder Technology 10 231

    [15]

    Lian G, Adamsand M J, Thornton C 1996 Journal of Fluid Mechanics 311 141

    [16]

    Davis R H, Serayssol J M, Hinch E J 1986 Journal of Fluid Mechanics 163 479

    [17]

    Zhang R 2005 Ph. D. Dissertation (Jilin: Ji Lin University) (in Chinese) [张锐 2005 博士学位论文(吉林:吉林大学)]

    [18]

    Zhang R, Li J Q, Zhou C H, Xu S C 2007 Transactions of the Chinese Society of Agricultural Engineering 23(9) 13 (in Chinese) [张锐,李建桥,周长海,许述财 2007 农业过程学报 23(9) 13]

    [19]

    Itasca C 2004 Particle flow code, PFC2D 3.1 (Minneapolis, Minnesota Press) p123

    [20]

    Shen Z F, Jiang M J, Zhu F Y, Hu H J 2011 Northwestern Seismological Journal 33(8) 160 (in Chinese) [申志福,蒋明镜,朱方园,胡海军 2011 西北地震学报 33(8) 160]

    [21]

    Cundall P A, Strack O L 1997 Geotechnique 29(1) 47

    [22]

    Yang Y, Tang S G, Wang J L 2007 Computer Aider Engineering 16 (3) 65 (in Chinese) [杨洋, 唐寿高,王居林 2007 计算机辅助工程 16 (3) 65]

    [23]

    Iwashita K, Oda M 1998 Journal of Engineering Mechanics 124 285

    [24]

    Jiao Y , Zhang X X , Kong F C 2014 Journal ofChina Coal Society 39 2092 (in Chinese) [焦杨,章新喜,孔凡成 2014 煤炭学报 39 2092]

  • [1]

    Fu J S, Cheong Y S, Adams M J, Reynolds G K 2004 Powder Technology 140 24

    [2]

    Jinsheng F, Gavin K R, Michael J A 2005 Chemical Engineering Science 60 4005

    [3]

    Gao H L, Chen Y C, Zhao Y Z, Zhen J Y 2011 Acta Phys. Sin. 60 124501 (in Chinese) [高红利, 陈友川, 赵永志, 郑津洋 2011 物理学报 60 124501]

    [4]

    Zhao L L, Zhao Y M, Liu C S, Li J 2014 Acta Phys. Sin. 63 034501 (in Chinese) [赵啦啦, 赵跃民, 刘初升, 李珺 2014 物理学报 63 034501]

    [5]

    Radl S, Kalvoda E, Glasser B J, Khinast J G 2010 Powder Technology 200 171

    [6]

    Zhu R R, Zhu W B, Xing L C, Sun Q Q 2011 Powder Technology 210 73

    [7]

    He Y, Peng W, Wang T, Yan S 2014 Mathematical Problems in Engineering 31 568

    [8]

    Thornton C, Liu L 2004 Powder Technology 143 110

    [9]

    Sergiy A, Manoj K, Jurgen T 2006 Chemical Engineering and Processing 45 838

    [10]

    Mishra B K, Thornton C 2001 International Journal of Mineral Processing 61 225

    [11]

    Liu L, Kafui K D, Thornton C 2010 Powder Technology 199 189

    [12]

    Xu Y, Sun Q C, Zhang L,Huang W B 2003 Advanced in Mechanics 33 253 (in Chinese) [徐泳,孙其诚,张凌,黄文彬 2003 力学进展 33 253]

    [13]

    Christopher D, Michael J 2000 Langmuir 16 9396

    [14]

    Hotta K, Taked A K, Iinoya K 1974 Powder Technology 10 231

    [15]

    Lian G, Adamsand M J, Thornton C 1996 Journal of Fluid Mechanics 311 141

    [16]

    Davis R H, Serayssol J M, Hinch E J 1986 Journal of Fluid Mechanics 163 479

    [17]

    Zhang R 2005 Ph. D. Dissertation (Jilin: Ji Lin University) (in Chinese) [张锐 2005 博士学位论文(吉林:吉林大学)]

    [18]

    Zhang R, Li J Q, Zhou C H, Xu S C 2007 Transactions of the Chinese Society of Agricultural Engineering 23(9) 13 (in Chinese) [张锐,李建桥,周长海,许述财 2007 农业过程学报 23(9) 13]

    [19]

    Itasca C 2004 Particle flow code, PFC2D 3.1 (Minneapolis, Minnesota Press) p123

    [20]

    Shen Z F, Jiang M J, Zhu F Y, Hu H J 2011 Northwestern Seismological Journal 33(8) 160 (in Chinese) [申志福,蒋明镜,朱方园,胡海军 2011 西北地震学报 33(8) 160]

    [21]

    Cundall P A, Strack O L 1997 Geotechnique 29(1) 47

    [22]

    Yang Y, Tang S G, Wang J L 2007 Computer Aider Engineering 16 (3) 65 (in Chinese) [杨洋, 唐寿高,王居林 2007 计算机辅助工程 16 (3) 65]

    [23]

    Iwashita K, Oda M 1998 Journal of Engineering Mechanics 124 285

    [24]

    Jiao Y , Zhang X X , Kong F C 2014 Journal ofChina Coal Society 39 2092 (in Chinese) [焦杨,章新喜,孔凡成 2014 煤炭学报 39 2092]

  • [1] 王蓬, 孔平, 李然, 华云松, 厚美瑛, 孙其诚. 准二维湿颗粒体系融化过程中的结构与缺陷. 物理学报, 2021, 70(11): 116401. doi: 10.7498/aps.70.20202037
    [2] 蒋城露, 王昂, 赵锋, 尚海林, 张明建, 刘福生, 刘其军. 基于三维离散元方法探究奥克托今颗粒落锤撞击点火机理. 物理学报, 2019, 68(22): 228301. doi: 10.7498/aps.68.20190993
    [3] 王嗣强, 季顺迎. 基于超二次曲面的颗粒材料缓冲性能离散元分析. 物理学报, 2018, 67(9): 094501. doi: 10.7498/aps.67.20172549
    [4] 唐瀚玉, 王娜, 吴学邦, 刘长松. 剪切振动下湿颗粒的力学谱. 物理学报, 2018, 67(20): 206402. doi: 10.7498/aps.67.20180966
    [5] 季顺迎, 樊利芳, 梁绍敏. 基于离散元方法的颗粒材料缓冲性能及影响因素分析. 物理学报, 2016, 65(10): 104501. doi: 10.7498/aps.65.104501
    [6] 韩燕龙, 贾富国, 曾勇, 王爱芳. 受碾区域内颗粒轴向流动特性的离散元模拟. 物理学报, 2015, 64(23): 234502. doi: 10.7498/aps.64.234502
    [7] 孟凡净, 刘焜. 密集剪切颗粒流中速度波动和自扩散特性的离散元模拟. 物理学报, 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [8] 李树忱, 平洋, 李术才, 寇强, 马腾飞, 冯丙阳. 基于流形覆盖的岩体宏细观破裂的颗粒离散元法. 物理学报, 2014, 63(5): 050202. doi: 10.7498/aps.63.050202
    [9] 张富翁, 王立, 刘传平, 吴平. 竖直振动管中颗粒的上升运动. 物理学报, 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [10] 吴迪平, 李星祥, 秦勤, 管奔, 臧勇. 离散颗粒层被横向推移过程中的力学行为研究. 物理学报, 2014, 63(9): 098201. doi: 10.7498/aps.63.098201
    [11] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究. 物理学报, 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [12] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [13] 高红利, 陈友川, 赵永志, 郑津洋. 薄滚筒内二元湿颗粒体系混合行为的离散单元模拟研究. 物理学报, 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [14] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [15] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [16] 宜晨虹, 慕青松, 苗天德. 重力作用下颗粒介质应力链的离散元模拟. 物理学报, 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [17] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究. 物理学报, 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [18] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 粉末材料堆积的物理模型与仿真系统. 物理学报, 2009, 58(13): 21-S28. doi: 10.7498/aps.58.21
    [19] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 颗粒离散元模拟中的阻尼系数标定. 物理学报, 2009, 58(8): 5155-5161. doi: 10.7498/aps.58.5155
    [20] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟. 物理学报, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
计量
  • 文章访问数:  5910
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-05
  • 修回日期:  2015-03-04
  • 刊出日期:  2015-08-05

/

返回文章
返回