搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密集剪切颗粒流中速度波动和自扩散特性的离散元模拟

孟凡净 刘焜

引用本文:
Citation:

密集剪切颗粒流中速度波动和自扩散特性的离散元模拟

孟凡净, 刘焜

Velocity fluctuation and self diffusion character in a dense granular sheared flow studied by discrete element method

Meng Fan-Jing, Liu Kun
PDF
导出引用
  • 分析了平行板间密集剪切颗粒流的平均速度、速度波动、区域划分和自扩散特性. 为了分析以上问题,建立了平均固体体积分数为0.80剪切平行板间密集颗粒流的离散元物理模型. 研究结果表明:间隙间颗粒的平均速度从上到下逐渐增大,波动速度恰好相反;纵向的平均速度、波动速度较小,这一点稀疏剪切颗粒流正相反;根据剪切率和平均速度大小把间隙间纵向区域依次划分为类固体、振荡和类流体区域,并得出了波动速度对剪切率的依赖关系;间隙间颗粒的自扩散主要集中在横向,而稀疏剪切颗粒流在纵向的自扩散同样较突出. 通过对流变和扩散特性的模拟分析,直观地反映了颗粒的微观流变特性,有益于密集剪切颗粒流的流变机理的研究.
    The distribution of average velocities, fluctuation of velocities, regional definition, and granular self-diffusion characters in dense granular flows between sheared parallel plates are discussed. In order to study the above problems, we use computer-established discrete element model with an average solid fraction of 0.80. Theoretical results show that the average velocities decrease with increasing height, and are larger for the case of lower plate with greater velocity; the average velocities in y direction are close to 0 because there is no bulk motion in y direction. Flows of the lower plate with a greater velocity induce relatively greater fluctuation of velocities in the x and y directions, the fluctuation of velocities increases with the height and is larger in the area close to the upper plate. The flows consist of a “solid-like” area in the lower test region, but a “fluid-like” region in the upper, and an “oscillating” region in the middle of the channel. By tracking the movements of granules continually, variations of the mean-square self-diffusion relative displacements with square time are plotted, and the mean self-diffusion relative coefficients are determined. As the fluctuation and self-diffusion analysis directly reflect the macroscopic properties of granules and provide bases and references for researching the flow mechanisms of “dense granular sheared flows”.
    • 基金项目: 国家自然科学基金(批准号:51375132,51175136,51005067)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51375132, 51175136, 51005067).
    [1]

    Hsiau S S, Shieh Y M 1999 J. Rheol. 43 1049

    [2]

    Majmudar T S, Behringer R P 2005 Nature 43 1079

    [3]

    Ji S Y, Li P F, and Chen X D 2012 Acta Phys. Sin. 61 184703 (in Chinese)[季顺迎, 李鹏飞, 陈晓东 2012 物理学报 61 184703]

    [4]

    Peng Z, Li X Q, Jiang L, Fu L P, Jiang Y M 2009 Acta Phys. Sin. 58 2090 (in Chinese) [彭政, 李湘群, 蒋礼, 符力平, 蒋亦民 2009 物理学报 58 2090]

    [5]

    Peng Y J, Zhang Z, Wang Y, Liu X S 2012 Acta Phys. Sin. 61 134501 (in Chinese)[[彭亚晶, 张卓, 王勇, 刘小嵩 2012 物理学报 61 134501]

    [6]

    Leonard A, Daraio C 2012 Phys. Rev. Lett. 108 214301

    [7]

    Eugenio H, Franco T, Francisco M 2011 Phys. Rev. E 84 041304

    [8]

    Seguin A, Bertho Y, Martinez F, Crassous J 2013 Phys. Rev. E 87 012201

    [9]

    Lehane B M, Liu Q B 2013 Geotech. Geol. Eng. 31 329

    [10]

    Wang W, Liu X J, Liu K 2012 Tribol. Lett. 48 229

    [11]

    Yi C H, Liu Y, Miao T D, Mu Q S, Qi Y L 2007 Granular Matter 9 195

    [12]

    Shojaaee Z, Roux J N, Chevoir F, Wolf D E 2012 Phys. Rev. E 86 011301

    [13]

    Azèma E, Estrada N, Radjaï F 2012 Phys. Rev. E 86 041301

    [14]

    Zhen H P, Jiang Y M, Peng Z 2013 Chin. Phys. B 22 040511

    [15]

    Elkholy K N, Khonsari M M 2008 J. Eng. Tribo. 222 741

    [16]

    Bose M, Kumaran V 2004 Phys. Rev. E 69 061301

    [17]

    Bocquet L, Losert W, Schalk D, Lubensky T C, Gollub J P 2001 Phys. Rev. E 65 011307

    [18]

    Johnson P C, Jackson R 1987 J. Fluid Mech. 176 67

    [19]

    Kondic L, Fang X, Losert W, O'Hern C S, BehringerR P 2012 Phys. Rev. E 85 011305

    [20]

    Tordesillas A, Walker D M, Lin Q 2010 Phys. Rev. E 81 011302

    [21]

    Cai Q D, Chen S Y, Shen X W 2011 Chin. Phys. B 20 024502

    [22]

    Zhou G G D and Sun Q C 2013 Powder Technology 239 115

    [23]

    Bei Z W, Sun Q C, Liu J G, Jin F, Zhang C H 2011 Acta Phys. Sin. 60 034502 (in Chinese) [毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉 2011 物理学报 60 034502]

    [24]

    Ragione L L, Magnanimo V 2012 Phys. Rev. E 85 031304

    [25]

    Lu L S, Hsiau S S 2008 Particuology 6 445

    [26]

    Utter B, Behringer R P 2004 Phys. Rev. E 69 031308

    [27]

    Meng F J, Liu K, Wang W 2013 Applied Mathematics and Mechanics 34 7 14 (in Chinese). [孟凡净, 刘焜, 王伟 2013 应用数学和力学 347 14]

    [28]

    Han X M, Gao F, Fu R, Song B W, Nong W H 2009 Materials China 28 8 ( in Chinese) [韩晓明, 高飞, 符蓉, 宋宝韫, 农万华 2009 中国材料进展 28 8]

    [29]

    Zhang B P 2011 MS Thesis (Hefei: Hefei University of Technology) (in Chinese) [张柏平 2011 硕士学位论文(合肥: 合肥工业大学)]

    [30]

    Chun C L, Shu S H, Wen J Y 2012 Inter. J. Multi. Flow 46 22

    [31]

    Giulio B 2007 Nature Physics 3 222

    [32]

    Zhang Y, Campbell C S 1992 J. Fluid Mech. 237 541

    [33]

    Wang W, Liu X J, Jiao M H, Liu K 2009 J. Mech. Eng. 45 101 (in Chinese) [王伟, 刘小君, 焦明华, 刘焜 2009 机械工程学报 45 101]

    [34]

    Campbell C S 1990 Annu. Rev. Fluid Mech. 22 57

  • [1]

    Hsiau S S, Shieh Y M 1999 J. Rheol. 43 1049

    [2]

    Majmudar T S, Behringer R P 2005 Nature 43 1079

    [3]

    Ji S Y, Li P F, and Chen X D 2012 Acta Phys. Sin. 61 184703 (in Chinese)[季顺迎, 李鹏飞, 陈晓东 2012 物理学报 61 184703]

    [4]

    Peng Z, Li X Q, Jiang L, Fu L P, Jiang Y M 2009 Acta Phys. Sin. 58 2090 (in Chinese) [彭政, 李湘群, 蒋礼, 符力平, 蒋亦民 2009 物理学报 58 2090]

    [5]

    Peng Y J, Zhang Z, Wang Y, Liu X S 2012 Acta Phys. Sin. 61 134501 (in Chinese)[[彭亚晶, 张卓, 王勇, 刘小嵩 2012 物理学报 61 134501]

    [6]

    Leonard A, Daraio C 2012 Phys. Rev. Lett. 108 214301

    [7]

    Eugenio H, Franco T, Francisco M 2011 Phys. Rev. E 84 041304

    [8]

    Seguin A, Bertho Y, Martinez F, Crassous J 2013 Phys. Rev. E 87 012201

    [9]

    Lehane B M, Liu Q B 2013 Geotech. Geol. Eng. 31 329

    [10]

    Wang W, Liu X J, Liu K 2012 Tribol. Lett. 48 229

    [11]

    Yi C H, Liu Y, Miao T D, Mu Q S, Qi Y L 2007 Granular Matter 9 195

    [12]

    Shojaaee Z, Roux J N, Chevoir F, Wolf D E 2012 Phys. Rev. E 86 011301

    [13]

    Azèma E, Estrada N, Radjaï F 2012 Phys. Rev. E 86 041301

    [14]

    Zhen H P, Jiang Y M, Peng Z 2013 Chin. Phys. B 22 040511

    [15]

    Elkholy K N, Khonsari M M 2008 J. Eng. Tribo. 222 741

    [16]

    Bose M, Kumaran V 2004 Phys. Rev. E 69 061301

    [17]

    Bocquet L, Losert W, Schalk D, Lubensky T C, Gollub J P 2001 Phys. Rev. E 65 011307

    [18]

    Johnson P C, Jackson R 1987 J. Fluid Mech. 176 67

    [19]

    Kondic L, Fang X, Losert W, O'Hern C S, BehringerR P 2012 Phys. Rev. E 85 011305

    [20]

    Tordesillas A, Walker D M, Lin Q 2010 Phys. Rev. E 81 011302

    [21]

    Cai Q D, Chen S Y, Shen X W 2011 Chin. Phys. B 20 024502

    [22]

    Zhou G G D and Sun Q C 2013 Powder Technology 239 115

    [23]

    Bei Z W, Sun Q C, Liu J G, Jin F, Zhang C H 2011 Acta Phys. Sin. 60 034502 (in Chinese) [毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉 2011 物理学报 60 034502]

    [24]

    Ragione L L, Magnanimo V 2012 Phys. Rev. E 85 031304

    [25]

    Lu L S, Hsiau S S 2008 Particuology 6 445

    [26]

    Utter B, Behringer R P 2004 Phys. Rev. E 69 031308

    [27]

    Meng F J, Liu K, Wang W 2013 Applied Mathematics and Mechanics 34 7 14 (in Chinese). [孟凡净, 刘焜, 王伟 2013 应用数学和力学 347 14]

    [28]

    Han X M, Gao F, Fu R, Song B W, Nong W H 2009 Materials China 28 8 ( in Chinese) [韩晓明, 高飞, 符蓉, 宋宝韫, 农万华 2009 中国材料进展 28 8]

    [29]

    Zhang B P 2011 MS Thesis (Hefei: Hefei University of Technology) (in Chinese) [张柏平 2011 硕士学位论文(合肥: 合肥工业大学)]

    [30]

    Chun C L, Shu S H, Wen J Y 2012 Inter. J. Multi. Flow 46 22

    [31]

    Giulio B 2007 Nature Physics 3 222

    [32]

    Zhang Y, Campbell C S 1992 J. Fluid Mech. 237 541

    [33]

    Wang W, Liu X J, Jiao M H, Liu K 2009 J. Mech. Eng. 45 101 (in Chinese) [王伟, 刘小君, 焦明华, 刘焜 2009 机械工程学报 45 101]

    [34]

    Campbell C S 1990 Annu. Rev. Fluid Mech. 22 57

  • [1] 成浩, 韩培锋, 苏有文. 基于离散元方法的松散体滑动堆积特性 及影响因素分析. 物理学报, 2020, 69(16): 164501. doi: 10.7498/aps.69.20200223
    [2] 赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢. 玻璃-橡胶混合颗粒体系的弹性行为研究. 物理学报, 2018, 67(10): 104502. doi: 10.7498/aps.67.20172772
    [3] 孙保安, 王利峰, 邵建华. 非晶力学流变的自组织临界行为. 物理学报, 2017, 66(17): 178103. doi: 10.7498/aps.66.178103
    [4] 陈琼, 王青花, 赵闯, 张祺, 厚美瑛. 玻璃-橡胶混合颗粒的力学响应研究. 物理学报, 2015, 64(15): 154502. doi: 10.7498/aps.64.154502
    [5] 韩燕龙, 贾富国, 曾勇, 王爱芳. 受碾区域内颗粒轴向流动特性的离散元模拟. 物理学报, 2015, 64(23): 234502. doi: 10.7498/aps.64.234502
    [6] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究. 物理学报, 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [7] 韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强. 颗粒滚动摩擦系数对堆积特性的影响. 物理学报, 2014, 63(17): 174501. doi: 10.7498/aps.63.174501
    [8] 臧渡洋, 张永建. 水/空气界面纳米颗粒单层膜流变特性的锥体压入法研究. 物理学报, 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [9] 汤富领, 陈功宝, 谢勇, 路文江. Al表面的"类液"结构及其自扩散通道. 物理学报, 2011, 60(6): 066801. doi: 10.7498/aps.60.066801
    [10] 臧渡洋, 张永建, Langevin Dominique. SiO2纳米颗粒单层膜流变特性的双Wilhelmy片法研究. 物理学报, 2011, 60(7): 076801. doi: 10.7498/aps.60.076801
    [11] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [12] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 颗粒离散元模拟中的阻尼系数标定. 物理学报, 2009, 58(8): 5155-5161. doi: 10.7498/aps.58.5155
    [13] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究. 物理学报, 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [14] 宜晨虹, 慕青松, 苗天德. 重力作用下颗粒介质应力链的离散元模拟. 物理学报, 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [15] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟. 物理学报, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [16] 黄德财, 孙 刚, 厚美瑛, 陆坤权. 颗粒速度在颗粒流稀疏流-密集流转变中的作用. 物理学报, 2006, 55(9): 4754-4759. doi: 10.7498/aps.55.4754
    [17] 赵晓鹏, 高秀敏, 郜丹军, 钟鸿飞. 颗粒质量导致的电流变液结构演化特征. 物理学报, 2002, 51(5): 1075-1080. doi: 10.7498/aps.51.1075
    [18] 张海燕, GNgele, 马红孺. 二分量带电胶体悬浮系统的等效硬球模型. 物理学报, 2002, 51(8): 1892-1896. doi: 10.7498/aps.51.1892
    [19] 二分量胶体悬浮系统的短时间动力学. 物理学报, 2001, 50(9): 1810-1817. doi: 10.7498/aps.50.1810
    [20] 高树濬, 钱知强. 均匀合金自扩散的准化学模型. 物理学报, 1965, 21(3): 622-629. doi: 10.7498/aps.21.622
计量
  • 文章访问数:  2593
  • PDF下载量:  625
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-13
  • 修回日期:  2014-02-09
  • 刊出日期:  2014-07-05

密集剪切颗粒流中速度波动和自扩散特性的离散元模拟

  • 1. 合肥工业大学摩擦学研究所, 合肥 230009
    基金项目: 国家自然科学基金(批准号:51375132,51175136,51005067)资助的课题.

摘要: 分析了平行板间密集剪切颗粒流的平均速度、速度波动、区域划分和自扩散特性. 为了分析以上问题,建立了平均固体体积分数为0.80剪切平行板间密集颗粒流的离散元物理模型. 研究结果表明:间隙间颗粒的平均速度从上到下逐渐增大,波动速度恰好相反;纵向的平均速度、波动速度较小,这一点稀疏剪切颗粒流正相反;根据剪切率和平均速度大小把间隙间纵向区域依次划分为类固体、振荡和类流体区域,并得出了波动速度对剪切率的依赖关系;间隙间颗粒的自扩散主要集中在横向,而稀疏剪切颗粒流在纵向的自扩散同样较突出. 通过对流变和扩散特性的模拟分析,直观地反映了颗粒的微观流变特性,有益于密集剪切颗粒流的流变机理的研究.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回