搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶力学流变的自组织临界行为

孙保安 王利峰 邵建华

引用本文:
Citation:

非晶力学流变的自组织临界行为

孙保安, 王利峰, 邵建华

Self-organized critical behavior in plastic flow of amorphous solids

Sun Bao-An, Wang Li-Feng, Shao Jian-Hua
PDF
导出引用
  • 非晶材料是由液体快冷冻结而成的结构无序的亚稳态固体.在受力条件下,非晶材料表现出独特和复杂的流变行为,具有跨尺度的高度时空不均匀特征,并在一定条件下表现出自组织临界行为,和自然界以及物理系统中许多复杂体系的动力学行为相似.本文结合作者近年来在非晶合金流变行为方面的研究结果,对非晶材料流变的研究进展和物理机制的认识进行介绍,包括非晶材料流变的跨尺度特征、表征和微观结构机制,以及近年来发现的非晶力学流变的自组织临界行为、物理机制等.最后,对非晶材料流变行为研究中亟需解决的问题进行了总结和展望.
    Amorphous solids are metastable materials formed by the rapid quenching of liquid melts. Under mechanical stress, amorphous solid displays unique and complex plastic flow behavior, which is both spatially and temporally inhomogeneous on different length scales. In some cases, the plastic flow behavior of amorphous solid can evolve into the self-organized critical state, which is similar to many complex phenomena in nature and physics such as earthquakes, snow avelanches, motions of magnetic walls, etc. In this paper, we briefly review the recent research progress of the plastic flows of amorphous solids, with an emphasis on the plastic flow of metallic glass which has been one of our research foci in past few years. The review begins with an introduction of the inhomogeneous flow behaviors on different scales, from the macroscopical-scale spatially inhomogeous shear bands, temporally intermittent serrated flow to the atomic-scale localized viscoelastic behavior in metallic glass. The microscopical deformation theories including free volume model and shear transformation zone model, and recent efforts to elucidate macrosopical flow behaviors with these theories, are also presented. Finally, recent progress of the self-organized critical (SOC) behaviors of the plastic flow of metallic glass are reviewed, with an emphasis on its experimental characterizations and the underlying physics. The emergence of SOC in the plastic flow is closely related to the interactions between plastic flow carriers, and based on this point, the relation between the SOC behavior and the plasticity of metallic glass is elucidated. The implications of plastic flow of metallic glass for understanding the occurence of earthquakes are also discussed. The review is also concluded with some perspertives and unsolved issues for the plastic flow of amorphous solids.
      通信作者: 孙保安, baoansun@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51671121,51601002,51520105001)和中央高校基本科研业务费(批准号:30917015107)资助的课题.
      Corresponding author: Sun Bao-An, baoansun@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51671121, 51601002, 51520105001) and the Fundamental Research Funds for the Central Universities of China (Grant No. 30917015107).
    [1]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [2]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [3]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 55

    [4]

    Greer A L 1995 Science 267 1947

    [5]

    Ma Y F, Tang B Z, Xia L, Ding D 2016 Chin. Phys. Lett. 33 126101

    [6]

    Inoue A 2000 Acta Mater. 48 279

    [7]

    Schuh C A, Hufnag T C, Ramamurty U 2007 Acta Mater. 55 4067

    [8]

    Sun B A, Yu H B, Zhao D Q, Bai H Y, Wang W H 2010 Phys. Rev. Lett. 105 035501

    [9]

    Sun B A 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Science) (in Chinese) [孙保安 2010 博士学位论文(北京: 中国科学院]

    [10]

    Spaepen F 1977 Acta Metall. 25 407

    [11]

    Chen M W, Inoue A, Zhang W, Sakurai T 2006 Phys. Rev. Lett. 96 245502

    [12]

    Greer A L, Cheng Y Q, Ma E 2013 Mater. Sci. Eng. R 74 71

    [13]

    Argon A S 1979 Acta Mater. 27 47

    [14]

    Lewandowski J J, Greer A L 2005 Nat. Mater. 5 18

    [15]

    Wright W J, Samale M W, Hufnagel, LeBlanc M M, Florando J N 2011 Acta Mater. 57 4639

    [16]

    Bruck H A, Rosakis A J, Johnson W L 1996 J. Mater. Res. 11 503

    [17]

    Jiang W H, Liao H H, Liu F X, Choo H, Liaw P K 2008 Metall. Mater. Trans A 39 1822

    [18]

    Ye J C, Lu J, Liu C T, Yang Y 2010 Nat. Mater. 9 619

    [19]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hoffmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123

    [20]

    Jiang M Q, Lan H D 2009 J. Mech. Phys. Solids 57 1267

    [21]

    Park K W, Lee C M, Wakeda M, Shibutani Y, Falk M L, Lee J C 2008 Acta Mater. 56 5440

    [22]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [23]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329

    [24]

    Schuh C A, Nieh T G 2003 Acta Mater. 51 87

    [25]

    Wang Z, Qiao J W, Tian H, Sun B A, Wang B C, Xu B S, Chen M W 2015 Appl. Phys. Lett. 107 201902

    [26]

    Song S X, Bei H, Wadsworth J, Nieh T G 2008 Intermetallics 16 813

    [27]

    Sun B A, Pauly S, Hu J, Wang W H, Kuhn U, Eckert J 2013 Phys. Rev. Lett. 110 225501

    [28]

    Dubach A, Torre F H D, Löffler J F 2009 Acta Mater. 57 881

    [29]

    Hu J, Sun B A, Yang Y, Liu C T, Pauly S, Weng Y X, Eckert J 2015 Intermetallics 66 31

    [30]

    Qiao J W, Zhang Y, Liaw P K 2010 Intermetallics 18 2057

    [31]

    Maloney C, Lemaitre A 2004 Phys. Rev. Lett. 93 016001

    [32]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [33]

    Falk M L, Langer J S 1997 Phys. Rev. E 57 7192

    [34]

    Langer J S 2004 Phys. Rev. E 70 041502

    [35]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81

    [36]

    Manning M L, Langer J S, Carlson J M 2007 Phys. Rev. E 76 056106

    [37]

    Sun B A, Yang Y, Wang W H, Liu C T 2016 Sci. Rep. 6 21388

    [38]

    Furukawa A, Tanaka H 2009 Nat. Mater. 8 601

    [39]

    Bak P, Tang C, Wiesenfeld K 1987 Phys. Rev. Lett. 59 381

    [40]

    Bak P 1996 How Nature Works: The Science of Self-Organized Criticality (New York: Copernicus Press) p10

    [41]

    Sammonds 2005 Nat. Mater. 4 425

    [42]

    Ananthakrishna G, Noronha J, Fressengeas C, Kubin L P 1999 Phys. Rev. E 60 5455

    [43]

    Ren J L, Chen C, Wang G, Mattern N, Eckert J 2011 AIP Adv. 1 032158

    [44]

    Wang G, Chan K C, Xia L, Yu P, Shen J, Wang W H 2009 Acta Mater. 57 6146

    [45]

    Cannelli C, Cantelli R, Cordero F 1993 Phys. Rev. Lett. 70 3923

    [46]

    Sarmah R, Ananthakrishna G, Sun B A, Wang W H 2011 Acta Mater. 59 4482

    [47]

    Sun B A, Wang W H 2011 Appl. Phys. Lett. 98 201902

    [48]

    Peng H L, Li M Z, Sun B A, Wang W H 2012 J. Appl. Phys. 112 023516

    [49]

    Maloney C, Lemaitre A 2004 Phys. Rev. E 74 016118

    [50]

    Dasgupta R, George H, Hentschel E, Procaccia I 2012 Phys. Rev. Lett. 109 255502

  • [1]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [2]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [3]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 55

    [4]

    Greer A L 1995 Science 267 1947

    [5]

    Ma Y F, Tang B Z, Xia L, Ding D 2016 Chin. Phys. Lett. 33 126101

    [6]

    Inoue A 2000 Acta Mater. 48 279

    [7]

    Schuh C A, Hufnag T C, Ramamurty U 2007 Acta Mater. 55 4067

    [8]

    Sun B A, Yu H B, Zhao D Q, Bai H Y, Wang W H 2010 Phys. Rev. Lett. 105 035501

    [9]

    Sun B A 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Science) (in Chinese) [孙保安 2010 博士学位论文(北京: 中国科学院]

    [10]

    Spaepen F 1977 Acta Metall. 25 407

    [11]

    Chen M W, Inoue A, Zhang W, Sakurai T 2006 Phys. Rev. Lett. 96 245502

    [12]

    Greer A L, Cheng Y Q, Ma E 2013 Mater. Sci. Eng. R 74 71

    [13]

    Argon A S 1979 Acta Mater. 27 47

    [14]

    Lewandowski J J, Greer A L 2005 Nat. Mater. 5 18

    [15]

    Wright W J, Samale M W, Hufnagel, LeBlanc M M, Florando J N 2011 Acta Mater. 57 4639

    [16]

    Bruck H A, Rosakis A J, Johnson W L 1996 J. Mater. Res. 11 503

    [17]

    Jiang W H, Liao H H, Liu F X, Choo H, Liaw P K 2008 Metall. Mater. Trans A 39 1822

    [18]

    Ye J C, Lu J, Liu C T, Yang Y 2010 Nat. Mater. 9 619

    [19]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hoffmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123

    [20]

    Jiang M Q, Lan H D 2009 J. Mech. Phys. Solids 57 1267

    [21]

    Park K W, Lee C M, Wakeda M, Shibutani Y, Falk M L, Lee J C 2008 Acta Mater. 56 5440

    [22]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [23]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329

    [24]

    Schuh C A, Nieh T G 2003 Acta Mater. 51 87

    [25]

    Wang Z, Qiao J W, Tian H, Sun B A, Wang B C, Xu B S, Chen M W 2015 Appl. Phys. Lett. 107 201902

    [26]

    Song S X, Bei H, Wadsworth J, Nieh T G 2008 Intermetallics 16 813

    [27]

    Sun B A, Pauly S, Hu J, Wang W H, Kuhn U, Eckert J 2013 Phys. Rev. Lett. 110 225501

    [28]

    Dubach A, Torre F H D, Löffler J F 2009 Acta Mater. 57 881

    [29]

    Hu J, Sun B A, Yang Y, Liu C T, Pauly S, Weng Y X, Eckert J 2015 Intermetallics 66 31

    [30]

    Qiao J W, Zhang Y, Liaw P K 2010 Intermetallics 18 2057

    [31]

    Maloney C, Lemaitre A 2004 Phys. Rev. Lett. 93 016001

    [32]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [33]

    Falk M L, Langer J S 1997 Phys. Rev. E 57 7192

    [34]

    Langer J S 2004 Phys. Rev. E 70 041502

    [35]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81

    [36]

    Manning M L, Langer J S, Carlson J M 2007 Phys. Rev. E 76 056106

    [37]

    Sun B A, Yang Y, Wang W H, Liu C T 2016 Sci. Rep. 6 21388

    [38]

    Furukawa A, Tanaka H 2009 Nat. Mater. 8 601

    [39]

    Bak P, Tang C, Wiesenfeld K 1987 Phys. Rev. Lett. 59 381

    [40]

    Bak P 1996 How Nature Works: The Science of Self-Organized Criticality (New York: Copernicus Press) p10

    [41]

    Sammonds 2005 Nat. Mater. 4 425

    [42]

    Ananthakrishna G, Noronha J, Fressengeas C, Kubin L P 1999 Phys. Rev. E 60 5455

    [43]

    Ren J L, Chen C, Wang G, Mattern N, Eckert J 2011 AIP Adv. 1 032158

    [44]

    Wang G, Chan K C, Xia L, Yu P, Shen J, Wang W H 2009 Acta Mater. 57 6146

    [45]

    Cannelli C, Cantelli R, Cordero F 1993 Phys. Rev. Lett. 70 3923

    [46]

    Sarmah R, Ananthakrishna G, Sun B A, Wang W H 2011 Acta Mater. 59 4482

    [47]

    Sun B A, Wang W H 2011 Appl. Phys. Lett. 98 201902

    [48]

    Peng H L, Li M Z, Sun B A, Wang W H 2012 J. Appl. Phys. 112 023516

    [49]

    Maloney C, Lemaitre A 2004 Phys. Rev. E 74 016118

    [50]

    Dasgupta R, George H, Hentschel E, Procaccia I 2012 Phys. Rev. Lett. 109 255502

  • [1] 李林利, 薛春霞. 压电材料双曲壳热弹耦合作用下的混沌运动. 物理学报, 2019, 68(1): 010501. doi: 10.7498/aps.68.20181714
    [2] 邱辰霖, 程礼. 一种基于相邻数据依赖性的混沌分析方法. 物理学报, 2016, 65(3): 030503. doi: 10.7498/aps.65.030503
    [3] 汪祥莉, 王斌, 王文波, 喻敏. 混沌背景下非平稳谐波信号的自适应同步挤压小波变换提取. 物理学报, 2016, 65(20): 200202. doi: 10.7498/aps.65.200202
    [4] 孟凡净, 刘焜. 密集剪切颗粒流中速度波动和自扩散特性的离散元模拟. 物理学报, 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [5] 姜泽辉, 韩红, 李翛然, 王福力. 空气阻力对完全非弹性蹦球动力学行为的影响. 物理学报, 2012, 61(24): 240502. doi: 10.7498/aps.61.240502
    [6] 周志刚, 石玉仁, 刘丛波, 王光辉, 杨红娟. 非弹性蹦球的动力学研究. 物理学报, 2012, 61(20): 200501. doi: 10.7498/aps.61.200501
    [7] 姜海波, 张丽萍, 陈章耀, 毕勤胜. 脉冲作用下Chen系统的非光滑分岔分析. 物理学报, 2012, 61(8): 080505. doi: 10.7498/aps.61.080505
    [8] 臧渡洋, 张永建. 水/空气界面纳米颗粒单层膜流变特性的锥体压入法研究. 物理学报, 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [9] 辛宝贵, 陈通, 刘艳芹. 一类分数阶混沌金融系统的复杂性演化研究. 物理学报, 2011, 60(4): 048901. doi: 10.7498/aps.60.048901
    [10] 臧渡洋, 张永建, Langevin Dominique. SiO2纳米颗粒单层膜流变特性的双Wilhelmy片法研究. 物理学报, 2011, 60(7): 076801. doi: 10.7498/aps.60.076801
    [11] 庞浩, 杨钰, 王赞基. 非晶丝端部磁场效应的模拟. 物理学报, 2010, 59(7): 5049-5054. doi: 10.7498/aps.59.5049
    [12] 王炜, 张琪昌, 王雪娇. 待定固有频率法在分析系统混沌临界值问题中的应用. 物理学报, 2009, 58(8): 5162-5168. doi: 10.7498/aps.58.5162
    [13] 晋建秀, 丘水生, 谢丽英, 冯明库. 一种基于周期轨道统计的混沌信号不可预测性强弱的检测方法. 物理学报, 2008, 57(5): 2743-2749. doi: 10.7498/aps.57.2743
    [14] 孙克辉, 谈国强, 盛利元. TD-ERCS离散混沌伪随机序列的复杂性分析. 物理学报, 2008, 57(6): 3359-3366. doi: 10.7498/aps.57.3359
    [15] 庞 浩, 李 根, 王赞基. 磁环中非晶丝的阻抗效应分析. 物理学报, 2008, 57(11): 7194-7199. doi: 10.7498/aps.57.7194
    [16] 姜泽辉, 郑瑞华, 赵海发, 吴 晶. 完全非弹性蹦球的动力学行为. 物理学报, 2007, 56(7): 3727-3732. doi: 10.7498/aps.56.3727
    [17] 周海平, 蔡绍洪, 王春香. 含崩塌概率的一维沙堆模型的自组织临界性. 物理学报, 2006, 55(7): 3355-3359. doi: 10.7498/aps.55.3355
    [18] 郜传厚, 周志敏, 邵之江. 高炉冶炼过程的混沌性解析. 物理学报, 2005, 54(4): 1490-1494. doi: 10.7498/aps.54.1490
    [19] 具 睿, 张亚俊, 黄洪斌, 赵 环. 非锁相Lorenz-Haken方程动力学研究. 物理学报, 2004, 53(7): 2191-2196. doi: 10.7498/aps.53.2191
    [20] 罗诗裕, 谭永明, 邵明珠, 韦洛霞, 邓立虎. 沟道效应的运动阻尼与系统走向混沌的临界特征. 物理学报, 2004, 53(4): 1157-1161. doi: 10.7498/aps.53.1157
计量
  • 文章访问数:  3686
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-26
  • 修回日期:  2017-06-24
  • 刊出日期:  2017-09-05

非晶力学流变的自组织临界行为

  • 1. 南京理工大学格莱特纳米科技研究所, 南京 210094
  • 通信作者: 孙保安, baoansun@njust.edu.cn
    基金项目: 国家自然科学基金(批准号:51671121,51601002,51520105001)和中央高校基本科研业务费(批准号:30917015107)资助的课题.

摘要: 非晶材料是由液体快冷冻结而成的结构无序的亚稳态固体.在受力条件下,非晶材料表现出独特和复杂的流变行为,具有跨尺度的高度时空不均匀特征,并在一定条件下表现出自组织临界行为,和自然界以及物理系统中许多复杂体系的动力学行为相似.本文结合作者近年来在非晶合金流变行为方面的研究结果,对非晶材料流变的研究进展和物理机制的认识进行介绍,包括非晶材料流变的跨尺度特征、表征和微观结构机制,以及近年来发现的非晶力学流变的自组织临界行为、物理机制等.最后,对非晶材料流变行为研究中亟需解决的问题进行了总结和展望.

English Abstract

参考文献 (50)

目录

    /

    返回文章
    返回