搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维离散元方法探究奥克托今颗粒落锤撞击点火机理

蒋城露 王昂 赵锋 尚海林 张明建 刘福生 刘其军

引用本文:
Citation:

基于三维离散元方法探究奥克托今颗粒落锤撞击点火机理

蒋城露, 王昂, 赵锋, 尚海林, 张明建, 刘福生, 刘其军

Three-dimensional discrete element technology investigated ignition mechanism of octahydro-1, 3, 5, 7-tetranitro -1, 3, 5, 7-tetrazocine particles under drop hammer impact

Jiang Cheng-Lu, Wang Ang, Zhao Feng, Shang Hai-Lin, Zhang Ming-Jian, Liu Fu-Sheng, Liu Qi-Jun
PDF
HTML
导出引用
  • 炸药颗粒的冲击点火机理一直是人们关注并不断研究的课题, 但是迄今为止进展缓慢. 随着计算技术的高速发展, 三维离散元方法(three-dimensional discrete meso-element method, DM3)被认为是一种高效且直观的研究炸药冲击点火的有效手段. 本文基于三维离散元方法对奥克托今(HMX)颗粒在落锤撞击条件下的撞击变形和升温点火进行了研究, 模拟计算表明, 炸药的颗粒尺寸、堆积程度、内部缺陷以及落锤的冲击力大小都将影响HMX颗粒的升温点火和燃烧蔓延. 同时, 基于以上结果, 本文提出了尖顶变形加热点火机制以及平顶颗粒剪切加热机制. 特别地, 含内部缺陷的HMX颗粒在冲击条件下将出现两种情况: 尺寸较大的颗粒在孔洞处出现温度优势, 颗粒尺寸较小的温度优势出现在尖顶位置.
    The ignition mechanism of the explosive particles under impact has been a hot topic, but the research progress is slow. With the rapid development of computer science, the three-dimensional discrete element technique (DM3) is regarded as an efficient and intuitive method to study the explosive ignition under impact. As is well known, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is one of the most effective explosive particles in performance, which has high density and energy and thus possesses a significant application. In this paper, the deformation and ignition of HMX particles under impact of drop hammer are investigated based on the three-dimensional discrete element technique. Specifically, the computational process for shock loading as well as chemical reaction is employed in DM3 model through using the state equation of Hugoniot, the reactive model of Arrhenius, the state equation of JWL. The results show that the size, degree of accumulation, defect and the force of drop hammer can definitely influence the ignition and propagation of HMX particles. Under the same shock loading, the particles on a small scale would produce less power. On the same scale of particle, the less the number of particles, the shorter the deformation time is, so the temperature increases more easily. As for the different shapes of single particles, the deformation and ignition first appear from the ‘top’ for the spire particles, and then the deformation and ignition of flat particles happens from ‘shear’. Specifically, there are two results of the internal defect HMX particles under impact: the particles with bigger size (discrete elements 256 × 34 = 8704) have a temperature advantage near the ‘hole’, while the temperature advantage of the particles with the smaller size (discrete elements 93 × 35 = 3814) appears on the ‘top’.
      通信作者: 蒋城露, juul@my.swjtu.edu.cn ; 刘其军, qijunliu@home.swjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11272296)、中央高校基本科研业务费专项基金(批准号: 2682019LK07)、西北工业大学凝固技术国家重点实验室开放课题(批准号: SKLSP201843)、西南交通大学博士创新基金项目和西南交通大学博士生创新人才培养(批准号: D-CX201832)和西南交通大学第十八期重点实验室开放项目(批准号: ZD201918083)资助的课题
      Corresponding author: Jiang Cheng-Lu, juul@my.swjtu.edu.cn ; Liu Qi-Jun, qijunliu@home.swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11272296), the Fundamental Research Funds for the Central Universities, China (Grant No. 2682019LK07), the fund of the State Key Laboratory of Solidification Processing in NWPU, China (Grant No. SKLSP201843), the Doctoral Innovation Fund Program of Southwest Jiaotong University and the Doctoral Students Top-notch Innovative Talent Cultivation of Southwest Jiaotong University, China (Grant No. D-CX201832), and 18th key laboratory open project of Southwest jiaotong university, China (ZD201918083)
    [1]

    Alder B J, Wainwright T E 1957 J. Chem. Phys. 27 1208Google Scholar

    [2]

    Cundall P A, Strack O D L 1979 Géotechnique 29 47Google Scholar

    [3]

    赵永志, 江茂强, 徐平, 郑津洋 2009 物理学报 58 1819Google Scholar

    Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819Google Scholar

    [4]

    Cundall P A 1971 Proceedings of the Symposium of the International Society of Rock Mechanics 2 2

    [5]

    徐泳, 孙其诚, 张凌, 黄文彬 2003 力学进展 33 251Google Scholar

    Xu Y, Sun Q C, Zhang L, Huang W B 2003 Advances in Mechanics 33 251Google Scholar

    [6]

    Ahlinhan M F, Houehanou E, Koube M B, Doko V, Alaye Q, Sungura N E 2018 Adjovi Geomaterials 8 39Google Scholar

    [7]

    Cundall P A, Hart R D 1979 Numerical Methods in Geomechanics 1 289

    [8]

    Cundall P A, Hart R D 1992 International Journal for Computer-Aided Engineering and Software 9 101Google Scholar

    [9]

    Cundall P A 2001 Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 149 41

    [10]

    王泳嘉 1986第一届全国岩石力学数值计算及模型试验讨论会论文集 江西吉安 1986年6月20−27日 第3237页

    Wang Y J 1986 Proceedings of the First National Symposium on Numerical Computation and Model Testing of Rock Mechanics Ji’an, Jiangxi, June 20-27 1986 pp32−37 (in Chinese)

    [11]

    刘凯欣, 高凌天 2003 力学进展 33 483Google Scholar

    Liu K X, Gao L T 2003 Advances in Mechanics 33 483Google Scholar

    [12]

    Tang Z P, Horie Y, Psakhie S G 1997 High-Pressure Compression of Solids IV (New York: Springer) pp143−175

    [13]

    Tang Z P, Horie Y, Psakhie S G 1996 AIP Conference Proceedings 370 657Google Scholar

    [14]

    于继东, 王文强, 刘仓理, 赵峰, 孙承维 2008 爆炸与冲击 28 488Google Scholar

    Yu J D, Wang W Q, Liu C L, Zhao F, Sun C W 2008 Explosion and Shock Waves 28 488Google Scholar

    [15]

    刘超, 石艺娜, 秦承森, 梁仙红 2014 计算物理 31 51Google Scholar

    Liu C, Shi Y N, Qin C S, Liang X H 2014 Chinese Journal of Computational Physics 31 51Google Scholar

    [16]

    刘超, 石艺娜, 秦承森, 梁仙红 2014 兵工学报 35 1009Google Scholar

    Liu C, Shi Y N, Qin C S, Liang X H 2014 Acta Armamentarii 35 1009Google Scholar

    [17]

    孟凡净, 刘焜 2014 物理学报 63 262

    Meng F J, Liu K 2014 Acta Phys. Sin. 63 262

    [18]

    赵啦啦, 刘初升, 闫俊霞, 徐志鹏 2010 物理学报 59 187007

    Zhao L L, Liu C S, Yan J X, Xu Z P 2010 Acta Phys. Sin. 59 187007

    [19]

    程琦, 冉宪文, 刘苹, 汤文辉, Raphael Blumenfeld 2018 物理学报 67 0147028

    Cheng Q, Ran X W, Liu P, Tang W H, Raphael B 2018 Acta Phys. Sin. 67 0147028

    [20]

    Su Y, Fan J Y, Zheng Z Y, Zhao J J, Song H J 2019 Chin. Phys. B 27 056404

    [21]

    范航, 何冠松, 杨志剑, 聂福德, 陈鹏万 2019 物理学报 68 106201Google Scholar

    Fan H, He G S, Yang Z J, Nie F D, Chen P W 2019 Acta Phys. Sin. 68 106201Google Scholar

    [22]

    Tian Y, Wang H, Zhang C S, Tian Q, Zhang W B, Li H J, Li J, Liu B D, Sun G A, Peng T P, Xu Y, Gong J 2017 Chin. Phys. Lett. 34 066101Google Scholar

    [23]

    尚海林, 赵锋, 王文强, 傅华 2010 爆炸与冲击 30 131Google Scholar

    Shsng H L, Zhao F, Wang W Q, Fu H 2010 Explosion and Shock Waves 30 131Google Scholar

    [24]

    章冠人, 陈大年 1991 凝聚炸药起爆动力学 (北京: 国防工业出版社) 第89−128页

    Zhang G R, Chen D N 1991 Initiation Kinetics of Condensed Explosive (Beijing: National Defense Industry Press) pp89−128 (in Chinese)

    [25]

    尚海林 2009 硕士学位论文 (绵阳: 中国工程物理研究院)

    Shang H L 2009 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [26]

    Campbell A W, Davis W C, Travis J R 1961 Phys. Fluids 4 498Google Scholar

    [27]

    Walker F E, Wasley R J 1970 Combust. Flame 3 233

    [28]

    傅华, 赵峰, 谭多望, 王文强, 尚海林 2011 高压物理学报 25 8Google Scholar

    Fu H, Zhao F, Tan D W, Wang W Q, Shang H L 2011 Chinese Journal of High Pressure Physics 25 8Google Scholar

    [29]

    葛妮娜, 姬广富, 陈向荣, 魏永凯 2013 爆炸与冲击 S1 34

    Ge N N, Ji G F, Chen X R, Wei Y K 2013 Explosion and Shock Waves S S1 34

    [30]

    Millett J C F, Taylor P, Roberts A, Appleby-Thomas G 2017 J. Dynamic Behavior Mater. 3 100Google Scholar

    [31]

    唐志平 2003 中国科学E辑: 技术科学 11 989

    Tang Z P 2003 Sci. China Technol. Sci. 11 989

    [32]

    尚海林 2018 博士学位论文 (绵阳: 中国工程物理研究院)

    Shang H L 2018 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese)

  • 图 1  单个HMX颗粒离散元模型

    Fig. 1.  Discrete element model for a single HMX particle.

    图 2  多个HMX颗粒离散元模型

    Fig. 2.  Discrete element model for HMX multi-particles.

    图 3  颗粒尺寸为100 μm的HMX颗粒受到撞击后的响应过程

    Fig. 3.  The response of HMX particles with the size of 100 μm.

    图 5  颗粒尺寸为1000 μm的HMX颗粒炸药受到撞击后的响应过程

    Fig. 5.  The response of HMX particles with the size of 1000 μm.

    图 4  颗粒尺寸为500 μm的HMX颗粒炸药受到撞击后的响应过程

    Fig. 4.  The response of HMX particles with the size of 500 μm.

    图 6  下落高度为30 cm的HMX颗粒炸药受到撞击后的响应过程

    Fig. 6.  The response of HMX particles with the falling height of 30 cm.

    图 7  下落高度为40 cm的HMX颗粒炸药受到撞击后的响应过程

    Fig. 7.  The response of HMX particles with the falling height of 40 cm.

    图 8  颗粒数为19的HMX颗粒炸药受到撞击后的响应过程

    Fig. 8.  The response of HMX particles with the particle number 19.

    图 9  不同颗粒数样品厚度与温度的关系

    Fig. 9.  The relationship between temperature and thickness of particles.

    图 10  尖顶球型炸药颗粒冲击燃烧模型

    Fig. 10.  The combustion model under impact of spherical explosive particles.

    图 11  平顶颗粒剪切加热效应

    Fig. 11.  Shear heating effect of flat-topped particles.

    图 12  上表面局部点火及燃烧区扩展过程

    Fig. 12.  Local ignition of surface and the process of expansion.

    图 13  含孔洞颗粒(离散元${{256}} \times {{34 = 8704}}$个)受撞击后的的点火特性

    Fig. 13.  Ignition characteristics of porous particles (discrete elements ${{256}} \times {{34 = 8704}}$) under shock force.

    图 14  含孔洞颗粒(离散元${{93}} \times {{35 = 3814}}$个)受撞击后的的点火特性

    Fig. 14.  Ignition characteristics of porous particles (discrete elements ${{93}} \times {{35 = 3814}}$) under shock force.

    表 1  HMX的计算参数

    Table 1.  The calculating parameters of HMX.

    密度/
    g·cm–3
    摩擦
    系数
    元的半径/
    μm
    元的能量${Q_r}$/
    MJ·kg–1
    比热$C_v^i$/
    J·g–1K
    1.830.35106.191.1
    下载: 导出CSV
  • [1]

    Alder B J, Wainwright T E 1957 J. Chem. Phys. 27 1208Google Scholar

    [2]

    Cundall P A, Strack O D L 1979 Géotechnique 29 47Google Scholar

    [3]

    赵永志, 江茂强, 徐平, 郑津洋 2009 物理学报 58 1819Google Scholar

    Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819Google Scholar

    [4]

    Cundall P A 1971 Proceedings of the Symposium of the International Society of Rock Mechanics 2 2

    [5]

    徐泳, 孙其诚, 张凌, 黄文彬 2003 力学进展 33 251Google Scholar

    Xu Y, Sun Q C, Zhang L, Huang W B 2003 Advances in Mechanics 33 251Google Scholar

    [6]

    Ahlinhan M F, Houehanou E, Koube M B, Doko V, Alaye Q, Sungura N E 2018 Adjovi Geomaterials 8 39Google Scholar

    [7]

    Cundall P A, Hart R D 1979 Numerical Methods in Geomechanics 1 289

    [8]

    Cundall P A, Hart R D 1992 International Journal for Computer-Aided Engineering and Software 9 101Google Scholar

    [9]

    Cundall P A 2001 Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 149 41

    [10]

    王泳嘉 1986第一届全国岩石力学数值计算及模型试验讨论会论文集 江西吉安 1986年6月20−27日 第3237页

    Wang Y J 1986 Proceedings of the First National Symposium on Numerical Computation and Model Testing of Rock Mechanics Ji’an, Jiangxi, June 20-27 1986 pp32−37 (in Chinese)

    [11]

    刘凯欣, 高凌天 2003 力学进展 33 483Google Scholar

    Liu K X, Gao L T 2003 Advances in Mechanics 33 483Google Scholar

    [12]

    Tang Z P, Horie Y, Psakhie S G 1997 High-Pressure Compression of Solids IV (New York: Springer) pp143−175

    [13]

    Tang Z P, Horie Y, Psakhie S G 1996 AIP Conference Proceedings 370 657Google Scholar

    [14]

    于继东, 王文强, 刘仓理, 赵峰, 孙承维 2008 爆炸与冲击 28 488Google Scholar

    Yu J D, Wang W Q, Liu C L, Zhao F, Sun C W 2008 Explosion and Shock Waves 28 488Google Scholar

    [15]

    刘超, 石艺娜, 秦承森, 梁仙红 2014 计算物理 31 51Google Scholar

    Liu C, Shi Y N, Qin C S, Liang X H 2014 Chinese Journal of Computational Physics 31 51Google Scholar

    [16]

    刘超, 石艺娜, 秦承森, 梁仙红 2014 兵工学报 35 1009Google Scholar

    Liu C, Shi Y N, Qin C S, Liang X H 2014 Acta Armamentarii 35 1009Google Scholar

    [17]

    孟凡净, 刘焜 2014 物理学报 63 262

    Meng F J, Liu K 2014 Acta Phys. Sin. 63 262

    [18]

    赵啦啦, 刘初升, 闫俊霞, 徐志鹏 2010 物理学报 59 187007

    Zhao L L, Liu C S, Yan J X, Xu Z P 2010 Acta Phys. Sin. 59 187007

    [19]

    程琦, 冉宪文, 刘苹, 汤文辉, Raphael Blumenfeld 2018 物理学报 67 0147028

    Cheng Q, Ran X W, Liu P, Tang W H, Raphael B 2018 Acta Phys. Sin. 67 0147028

    [20]

    Su Y, Fan J Y, Zheng Z Y, Zhao J J, Song H J 2019 Chin. Phys. B 27 056404

    [21]

    范航, 何冠松, 杨志剑, 聂福德, 陈鹏万 2019 物理学报 68 106201Google Scholar

    Fan H, He G S, Yang Z J, Nie F D, Chen P W 2019 Acta Phys. Sin. 68 106201Google Scholar

    [22]

    Tian Y, Wang H, Zhang C S, Tian Q, Zhang W B, Li H J, Li J, Liu B D, Sun G A, Peng T P, Xu Y, Gong J 2017 Chin. Phys. Lett. 34 066101Google Scholar

    [23]

    尚海林, 赵锋, 王文强, 傅华 2010 爆炸与冲击 30 131Google Scholar

    Shsng H L, Zhao F, Wang W Q, Fu H 2010 Explosion and Shock Waves 30 131Google Scholar

    [24]

    章冠人, 陈大年 1991 凝聚炸药起爆动力学 (北京: 国防工业出版社) 第89−128页

    Zhang G R, Chen D N 1991 Initiation Kinetics of Condensed Explosive (Beijing: National Defense Industry Press) pp89−128 (in Chinese)

    [25]

    尚海林 2009 硕士学位论文 (绵阳: 中国工程物理研究院)

    Shang H L 2009 M. S. Thesis (Mianyang: China Academy of Engineering Physics) (in Chinese)

    [26]

    Campbell A W, Davis W C, Travis J R 1961 Phys. Fluids 4 498Google Scholar

    [27]

    Walker F E, Wasley R J 1970 Combust. Flame 3 233

    [28]

    傅华, 赵峰, 谭多望, 王文强, 尚海林 2011 高压物理学报 25 8Google Scholar

    Fu H, Zhao F, Tan D W, Wang W Q, Shang H L 2011 Chinese Journal of High Pressure Physics 25 8Google Scholar

    [29]

    葛妮娜, 姬广富, 陈向荣, 魏永凯 2013 爆炸与冲击 S1 34

    Ge N N, Ji G F, Chen X R, Wei Y K 2013 Explosion and Shock Waves S S1 34

    [30]

    Millett J C F, Taylor P, Roberts A, Appleby-Thomas G 2017 J. Dynamic Behavior Mater. 3 100Google Scholar

    [31]

    唐志平 2003 中国科学E辑: 技术科学 11 989

    Tang Z P 2003 Sci. China Technol. Sci. 11 989

    [32]

    尚海林 2018 博士学位论文 (绵阳: 中国工程物理研究院)

    Shang H L 2018 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese)

  • [1] 马光鹏, 龚振权, 聂梦娇, 曹慧群, 屈军乐, 林丹樱, 于斌. 用于三维单颗粒示踪的多焦面双螺旋点扩散函数显微研究. 物理学报, 2024, 73(10): 108701. doi: 10.7498/aps.73.20240271
    [2] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟. 物理学报, 2024, 73(11): 115201. doi: 10.7498/aps.73.20240319
    [3] 李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子. 托卡马克装置中等离子体环向旋转对三维响应场的影响. 物理学报, 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [4] 麻礼东, 杨光辉, 张晟, 林平, 田园, 杨磊. 三维漏斗中颗粒物质堵塞问题的数值实验研究. 物理学报, 2018, 67(4): 044501. doi: 10.7498/aps.67.20171813
    [5] 高汉峰, 张欣, 吴福根, 姚源卫. 二维三组元声子晶体中的半狄拉克点及奇异特性. 物理学报, 2016, 65(4): 044301. doi: 10.7498/aps.65.044301
    [6] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [7] 罗海滨, 李俊杰, 马渊, 郭春文, 王锦程. 粗化过程中颗粒界面形状演化的三维多相场法研究. 物理学报, 2014, 63(2): 026401. doi: 10.7498/aps.63.026401
    [8] 黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣. 介观尺度下活性炭微粒的光镊捕捉、点火和扩散燃烧特性研究. 物理学报, 2014, 63(17): 178802. doi: 10.7498/aps.63.178802
    [9] 袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞. 基于现役装置的冲击点火可行性概念研究. 物理学报, 2012, 61(11): 114206. doi: 10.7498/aps.61.114206
    [10] 苏锐, 龙瑶, 姜胜利, 何捷, 陈军. 外部压力下β相奥克托金晶体弹性性质变化的第一性原理研究. 物理学报, 2012, 61(20): 206201. doi: 10.7498/aps.61.206201
    [11] 闫冠云, 田强, 黄朝强, 顾小敏, 孙光爱, 陈波, 黄明, 聂福德, 柳义, 李秀宏. 热损伤奥克托金(HMX) 缺陷的X射线小角散射研究. 物理学报, 2012, 61(13): 136101. doi: 10.7498/aps.61.136101
    [12] 袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰. 激光聚变冲击点火物理特性研究. 物理学报, 2011, 60(1): 015202. doi: 10.7498/aps.60.015202
    [13] 花金荣, 李莉, 向霞, 祖小涛. 熔石英亚表面杂质颗粒附近光场调制的三维模拟. 物理学报, 2011, 60(4): 044206. doi: 10.7498/aps.60.044206
    [14] 袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰. 激光脉冲参数对冲击点火的影响. 物理学报, 2011, 60(4): 045207. doi: 10.7498/aps.60.045207
    [15] 炎正馨. 激波诱导下纳米铝粉与微米铝粉的爆炸特征对比研究. 物理学报, 2011, 60(7): 076202. doi: 10.7498/aps.60.076202
    [16] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [17] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究. 物理学报, 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [18] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟. 物理学报, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [19] 刘 锐, 李寅阊, 厚美瑛. 三维颗粒气体相分离现象. 物理学报, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [20] 张家泰, 何斌, 贺贤土, 常铁强, 许林宝, N.E.安德列夫. 激光聚变快点火机理研究. 物理学报, 2001, 50(5): 921-925. doi: 10.7498/aps.50.921
计量
  • 文章访问数:  9407
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 修回日期:  2019-09-11
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-20

/

返回文章
返回