搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗化过程中颗粒界面形状演化的三维多相场法研究

罗海滨 李俊杰 马渊 郭春文 王锦程

引用本文:
Citation:

粗化过程中颗粒界面形状演化的三维多相场法研究

罗海滨, 李俊杰, 马渊, 郭春文, 王锦程
cstr: 32037.14.aps.63.026401

Phase field modeling of the evolution of partical interface shape distribution during coarsening

Luo Hai-Bin, Li Jun-Jie, Ma Yuan, Guo Chun-Wen, Wang Jin-Cheng
cstr: 32037.14.aps.63.026401
PDF
导出引用
  • 利用多相场模型对液-固两相体系中固相颗粒的粗化过程进行了三维模拟,对粗化过程中的界面形状分布进行了统计分析,研究了不同固相体积分数下颗粒连接状态对界面形状演化及粗化速率的影响. 模拟结果表明:当颗粒间存在大量连接时,粗化速率随固相分数的变化速率比颗粒无连接时变缓,且随着粗化进行,高曲率的双曲形界面所占比例不断降低,低曲率的椭球形界面所占比例逐渐增多;无论固相颗粒间是否发生连接,界面形状演化经历一定阶段后,三维界面形状分布均呈现自相似性,但随着固相体积分数的增加,界面形状分布呈现自相似性所需的时间延长.
    Three-dimensional simulations of particles coarsening in a solid-liquid two-phase system are investigated using the multiphase-field model. The evolution of the interface shape distribution during coarsening is analyzed. And the influences of the volume fraction on the interface shape distribution and coarsening rate are studied under different coalescence conditions. The simulation results show that the influence of volume fraction on the change of coarsening rate is delayed when there exists coalescence between solid particles under high volume fraction. Moreover, with the evolution of coarsening, proportion of the hyperboloid with high curvature decreases and the proportion of ellipsoid with low curvature increases. No matter whether the coalescence between particles occurs, the interface shape distribution has self-similarity after a period of time of evolution. But it will take a longer time for the system to reach the steady state with the increasing of volume fraction.
    • 基金项目: 国家自然科学基金(批准号:51071128,51101124)、国家重点基础研究发展计划(批准号:2011CB610401)和教育部博士点基金(批准号:20116102120018)资助的课题.
    • Funds: Projet supported by National Natural Science foundation of China (Grant Nos. 51071128, 51101124), the National Basic Research Program of China (Grant No. 2011CB610401), and the Doctoral Program of Higher Education of China (Grant No. 20116102120018).
    [1]

    Lifshitz I M, Slyozov V V 1961 J. Phys. Chem. Solids 19 35

    [2]

    Wagner C 1961 Z. Elektrochem. 65 581

    [3]

    Bower T F, Brody H D, Flemings M C 1966 Trans. Metall. Soc. AIME 236 624

    [4]

    Marsh S P, Glicksman M E 1996 Acta Mater. 44 3761

    [5]

    Poirer D R, Ganesan S, Andrews M, Ocansey P 1991 Mater. Sci. Eng. A 148 289

    [6]

    Whisler N J, Kattamis T Z 1972 Cryst. Growth 15 20

    [7]

    Mendoza R, Alkemper J, Voorhees P W 2003 Metall. Mater. Trans. A 34 481

    [8]

    Mendoza R, Savin I, Thornton K, Voorhees P W 2004 Nature Mater. 3 385

    [9]

    Mendoza R, Thornton K, Savin I, Voorhees P W 2006 Acta Mater. 54 743

    [10]

    Kammer D, Voorhees P W 2006 Acta Mater. 54 1549

    [11]

    Fife J L, Voorhees P W 2009 Acta Mater. 57 2418

    [12]

    Karen Y C, Wiegart C, Wang S, Chu Y S, Liu W J 2012 Acta Mater. 60 4972

    [13]

    Wang Z J, Wang J C, Yang G C 2010 Chin. Phys. B 19 078101

    [14]

    Chen Y, Kang X H, Xiao N M, Zheng C W, Li D Z 2009 Acta Phys. Sin. 58 S124 ( in Chinese) [陈云, 康秀红, 肖纳敏, 郑成武, 李殿中 2009 物理学报 58 S124]

    [15]

    Zhao D W, Li J F 2009 Acta Phys. Sin. 58 7094 (in Chinese) [赵达文, 李金富 2009 物理学报 58 7094]

    [16]

    Zhao D P, Jing T, Liu B C 2003 Acta Phys. Sin. 52 1373 (in Chinese) [赵代平, 荆涛, 柳百成 2003 物理学报52 1373]

    [17]

    Warren J A, Murray B T 1996 Model. Simul. Mater. Sci. Eng. 4 215

    [18]

    Fan D, Chen S P, Chen L Q, Voorhees P W 2002 Acta Mater. 50 1895

    [19]

    Wang K G, Ding X, Chang K, Chen L Q 2010 J. Appl. Phys. 107 061801

    [20]

    Kim S G 2007 Acta Mater. 55 6513

    [21]

    Wang T, Li J J, Wang J C 2013 Acta Phys. Sin. 62 106402 (in Chinese) [王陶, 李俊杰, 王锦程 2013 物理学报 62 106402]

    [22]

    Kailasam S K, Glicksman M E, Mani S S, Fradkov V E 1999 Metall. Mater. Trans. A 30 1541

  • [1]

    Lifshitz I M, Slyozov V V 1961 J. Phys. Chem. Solids 19 35

    [2]

    Wagner C 1961 Z. Elektrochem. 65 581

    [3]

    Bower T F, Brody H D, Flemings M C 1966 Trans. Metall. Soc. AIME 236 624

    [4]

    Marsh S P, Glicksman M E 1996 Acta Mater. 44 3761

    [5]

    Poirer D R, Ganesan S, Andrews M, Ocansey P 1991 Mater. Sci. Eng. A 148 289

    [6]

    Whisler N J, Kattamis T Z 1972 Cryst. Growth 15 20

    [7]

    Mendoza R, Alkemper J, Voorhees P W 2003 Metall. Mater. Trans. A 34 481

    [8]

    Mendoza R, Savin I, Thornton K, Voorhees P W 2004 Nature Mater. 3 385

    [9]

    Mendoza R, Thornton K, Savin I, Voorhees P W 2006 Acta Mater. 54 743

    [10]

    Kammer D, Voorhees P W 2006 Acta Mater. 54 1549

    [11]

    Fife J L, Voorhees P W 2009 Acta Mater. 57 2418

    [12]

    Karen Y C, Wiegart C, Wang S, Chu Y S, Liu W J 2012 Acta Mater. 60 4972

    [13]

    Wang Z J, Wang J C, Yang G C 2010 Chin. Phys. B 19 078101

    [14]

    Chen Y, Kang X H, Xiao N M, Zheng C W, Li D Z 2009 Acta Phys. Sin. 58 S124 ( in Chinese) [陈云, 康秀红, 肖纳敏, 郑成武, 李殿中 2009 物理学报 58 S124]

    [15]

    Zhao D W, Li J F 2009 Acta Phys. Sin. 58 7094 (in Chinese) [赵达文, 李金富 2009 物理学报 58 7094]

    [16]

    Zhao D P, Jing T, Liu B C 2003 Acta Phys. Sin. 52 1373 (in Chinese) [赵代平, 荆涛, 柳百成 2003 物理学报52 1373]

    [17]

    Warren J A, Murray B T 1996 Model. Simul. Mater. Sci. Eng. 4 215

    [18]

    Fan D, Chen S P, Chen L Q, Voorhees P W 2002 Acta Mater. 50 1895

    [19]

    Wang K G, Ding X, Chang K, Chen L Q 2010 J. Appl. Phys. 107 061801

    [20]

    Kim S G 2007 Acta Mater. 55 6513

    [21]

    Wang T, Li J J, Wang J C 2013 Acta Phys. Sin. 62 106402 (in Chinese) [王陶, 李俊杰, 王锦程 2013 物理学报 62 106402]

    [22]

    Kailasam S K, Glicksman M E, Mani S S, Fradkov V E 1999 Metall. Mater. Trans. A 30 1541

计量
  • 文章访问数:  8330
  • PDF下载量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-24
  • 修回日期:  2013-09-23
  • 刊出日期:  2014-01-05

/

返回文章
返回