搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

γ-α相变中不同晶界特征下铁素体生长形貌的相场模拟

张军 陈文雄 郑成武 李殿中

引用本文:
Citation:

γ-α相变中不同晶界特征下铁素体生长形貌的相场模拟

张军, 陈文雄, 郑成武, 李殿中

Phase-field modeling of ferrite morphology in austenite-to-ferrite transformation with considering anisotropic effects

Zhang Jun, Chen Wen-Xiong, Zheng Cheng-Wu, Li Dian-Zhong
PDF
导出引用
  • 利用多相场模型模拟了奥氏体(γ)-铁素体(α)相变过程中不同晶界特征下铁素体晶粒的形貌与生长动力学.模型中通过能量梯度系数和耦合项系数的协同变化定量表达晶界能与晶界迁移率的各向异性,同时固定相场界面宽度来保证计算精度.模拟结果显示:随着原奥氏体晶界能与铁素体-奥氏体晶界能比值σγγ/σαγ的增加,三叉相界面处的平衡角β减小,铁素体晶粒沿原奥氏体晶界与垂直于奥氏体晶界方向的生长速率差变大.铁素体与奥氏体晶粒间的晶粒取向越接近,铁素体生长越缓慢.模拟结果可描述铁素体晶粒生长形貌的多样性,与实验结果符合.
    The morphology of proeutectoid ferrite in steels has attracted much attention in view of its close correlation with the fundamentals about the phase transformation theory as well as its potential practice relating to the final microstructure and properties of the steel product. With the recent development of mesoscale microstructure-based transformation models, the approach to integrated microstructural simulation is ideally suited to provide a more in-depth insight into the mechanism and morphology complexity for this problem. Among the various mesoscopic models, the phase-field method can readily be used to simulate the complex morphological phenomena during the austenite-to-ferrite transformation in steels in view of its convenience to include the material properties, especially the grain boundary properties, in a phenomenological way, and thus to model the microstructural process in an anisotropic system. In this study, a modified multi-phase-field (MPF) model that takes into account various anisotropic interfacial conditions is developed to simulate the growth morphology of ferrite during the austenite-to-ferrite transformation in a Fe-C-Mn alloy. In this model, a quantitative relation between the MPF model parameters and the physical anisotropic interfacial properties, including the grain-boundary energy and the mobility, is carefully considered, which allows the identical width of the diffuse interface regarding arbitrary interfacial anisotropies in the MPF simulations. In this way, both the accuracy and the numerical stability of the model can be ensured. Using this model, the effects of the grain boundary anisotropy on the ferrite growth are studied. The simulation results indicate that apart from the interfacial energy of σα, γ, the grain boundary energy between the initial austenite grains, σγ, γ; does also significantly influence the growing morphology of ferrite. The ferrite growth along the initial austenite grain boundaries is facilitated when increasing the ratio of σγ, γ/σα, γ, and hence leading to a smaller equilibrium angle at the triple junction. The results also indicate that misorientation-dependent grain boundary energy and mobility play important roles in determining the ferrite growth behavior. The growth of ferrite with a low misorientation α/γ interface is greatly inhibited. The ferrites nucleated at the triple junctions of the initial austenite grains present different growth scenarios while assigning different orientation relationships. Finally, the simulated ferrite morphologies in a polycrystalline structure are compared with the optical micrograph and are found that they are in good consistence with each other. This MPF model can replicate the morphology diversity of the ferrite grains in the austenite-to-ferrite transformation.
      通信作者: 郑成武, cwzheng@imr.ac.cn
    • 基金项目: 国家自然科学基金(批准号:51371169,51401214)资助的课题.
      Corresponding author: Zheng Cheng-Wu, cwzheng@imr.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371169, 51401214).
    [1]

    Palumbo G, Lehockey E M, Lin P 1998 JOM 50 40

    [2]

    Xu Z, Zhao L C 2004 Principle of Solid-State Transformation in Metal (1st Ed.) (Beijing:Science Press) pp7-19(in Chinese)[徐洲, 赵连城2004金属固态相变原理(北京:科学出版社)第719页]

    [3]

    Anderson M P, Srolovitz D J, Grest G S, Sahni P S 1984 Acta Metall. 32 783

    [4]

    Raabe D 1997 Acta Mater. 45 611

    [5]

    Fan D, Chen L Q 1997 Acta Mater. 45 611

    [6]

    Militzer M 2011 Curr. Opin. Solid State Mater. Sci. 15 106

    [7]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113

    [8]

    McFadden G B, Wheeler A A, Braun R J, Coriell S R 1993 Phy. Rev. E 48 2016

    [9]

    Steinbach I 2009 Modell. Simul. Mater. Sci. Eng. 17 073001

    [10]

    Kazaryan A, Wang Y, Dregia S A, Patton B R 2002 Acta Mater. 50 2491

    [11]

    Chang K, Moelans N 2014 Acta Mater. 64 443

    [12]

    Miyoshi E, Takaki T 2016 Comput. Mater. Sci. 112 44

    [13]

    Steinbach I, Pezzolla F 1999 Physica D 134 385

    [14]

    Moelans N, Wendler F, Nestler B 2009 Comput. Mater. Sci. 46 479

    [15]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113

    [16]

    Moelans N 2011 Acta Mater. 59 1077

    [17]

    Zhang X G, Zong Y P, Wang M T, Wu Y 2011 Acta Phys. Sin. 60 068201 (in Chinese)[张宪刚, 宗亚平, 王明涛, 吴艳2011物理学报60 068201]

    [18]

    Zhang J, Zheng C W, Li D Z 2016 Acta Metall. Sin. 52 1449 (in Chinese)[张军, 郑成武, 李殿中2016金属学报52 1449]

    [19]

    Eiken J, Bttger B, Steinbach I 2006 Phys. Rev. E 73 066122

    [20]

    Gustafson P 1987 Metall. Trans. A 18 175

    [21]

    Huang W 1990 Metall. Trans. A 21 2115

    [22]

    Loginova I,gren J, Amberg G 2004 Acta Mater. 52 4055

    [23]

    Holm E A, Hassold G N, Miodownik M A 2001 Acta Mater. 49 2981

    [24]

    Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 320

    [25]

    Kim Y J, Hwang S K, Kim M H, Kwun S I, Chae S W 2005 Mater. Sci. Eng. A 408 110

    [26]

    Zheng C W, Raabe D 2013 Acta Mater. 61 5504

  • [1]

    Palumbo G, Lehockey E M, Lin P 1998 JOM 50 40

    [2]

    Xu Z, Zhao L C 2004 Principle of Solid-State Transformation in Metal (1st Ed.) (Beijing:Science Press) pp7-19(in Chinese)[徐洲, 赵连城2004金属固态相变原理(北京:科学出版社)第719页]

    [3]

    Anderson M P, Srolovitz D J, Grest G S, Sahni P S 1984 Acta Metall. 32 783

    [4]

    Raabe D 1997 Acta Mater. 45 611

    [5]

    Fan D, Chen L Q 1997 Acta Mater. 45 611

    [6]

    Militzer M 2011 Curr. Opin. Solid State Mater. Sci. 15 106

    [7]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113

    [8]

    McFadden G B, Wheeler A A, Braun R J, Coriell S R 1993 Phy. Rev. E 48 2016

    [9]

    Steinbach I 2009 Modell. Simul. Mater. Sci. Eng. 17 073001

    [10]

    Kazaryan A, Wang Y, Dregia S A, Patton B R 2002 Acta Mater. 50 2491

    [11]

    Chang K, Moelans N 2014 Acta Mater. 64 443

    [12]

    Miyoshi E, Takaki T 2016 Comput. Mater. Sci. 112 44

    [13]

    Steinbach I, Pezzolla F 1999 Physica D 134 385

    [14]

    Moelans N, Wendler F, Nestler B 2009 Comput. Mater. Sci. 46 479

    [15]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113

    [16]

    Moelans N 2011 Acta Mater. 59 1077

    [17]

    Zhang X G, Zong Y P, Wang M T, Wu Y 2011 Acta Phys. Sin. 60 068201 (in Chinese)[张宪刚, 宗亚平, 王明涛, 吴艳2011物理学报60 068201]

    [18]

    Zhang J, Zheng C W, Li D Z 2016 Acta Metall. Sin. 52 1449 (in Chinese)[张军, 郑成武, 李殿中2016金属学报52 1449]

    [19]

    Eiken J, Bttger B, Steinbach I 2006 Phys. Rev. E 73 066122

    [20]

    Gustafson P 1987 Metall. Trans. A 18 175

    [21]

    Huang W 1990 Metall. Trans. A 21 2115

    [22]

    Loginova I,gren J, Amberg G 2004 Acta Mater. 52 4055

    [23]

    Holm E A, Hassold G N, Miodownik M A 2001 Acta Mater. 49 2981

    [24]

    Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 320

    [25]

    Kim Y J, Hwang S K, Kim M H, Kwun S I, Chae S W 2005 Mater. Sci. Eng. A 408 110

    [26]

    Zheng C W, Raabe D 2013 Acta Mater. 61 5504

  • [1] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理. 物理学报, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [2] 刘钟磊, 曹津铭, 王智, 赵宇宏. 相场法探究铁电体涡旋拓扑结构与准同型相界. 物理学报, 2023, 72(3): 037702. doi: 10.7498/aps.72.20221898
    [3] 蒋新安, 赵宇宏, 杨文奎, 田晓林, 侯华. 相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理. 物理学报, 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [4] 郭震, 赵宇宏, 孙远洋, 赵宝军, 田晓林, 侯华. 相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制. 物理学报, 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [5] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [6] 郭春文, 李俊杰, 马渊, 王锦程. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律. 物理学报, 2015, 64(14): 148101. doi: 10.7498/aps.64.148101
    [7] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究. 物理学报, 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [8] 魏承炀, 李赛毅. 温度梯度对晶粒生长行为影响的相场模拟. 物理学报, 2011, 60(10): 100701. doi: 10.7498/aps.60.100701
    [9] 张宪刚, 宗亚平, 王明涛, 吴艳. 晶粒生长演变相场法模拟界面表达的物理模型. 物理学报, 2011, 60(6): 068201. doi: 10.7498/aps.60.068201
    [10] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [11] 宗亚平, 王明涛, 郭巍. 再结晶和外力场下第二相析出的相场法模拟. 物理学报, 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [12] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 物理学报, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [13] 陈玉娟, 陈长乐. 相场法模拟对流速度对上游枝晶生长的影响. 物理学报, 2008, 57(7): 4585-4589. doi: 10.7498/aps.57.4585
    [14] 冯 力, 王智平, 路 阳, 朱昌盛. 二元合金多晶粒的枝晶生长的等温相场模型. 物理学报, 2008, 57(2): 1084-1090. doi: 10.7498/aps.57.1084
    [15] 李俊杰, 王锦程, 许 泉, 杨根仓. 外来夹杂物颗粒对枝晶生长形态影响的相场法研究. 物理学报, 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [16] 路 阳, 王 帆, 朱昌盛, 王智平. 等温凝固多晶粒生长相场法模拟. 物理学报, 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [17] 张玉祥, 王锦程, 杨根仓, 周尧和. 相场法模拟弹性场对沉淀相变组织演化及相平衡成分的影响. 物理学报, 2006, 55(5): 2433-2438. doi: 10.7498/aps.55.2433
    [18] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [19] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 物理学报, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  7226
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-10
  • 修回日期:  2017-01-11
  • 刊出日期:  2017-04-05

/

返回文章
返回