搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浓度相关的扩散系数对定向凝固枝晶生长的影响

楚硕 郭春文 王志军 李俊杰 王锦程

引用本文:
Citation:

浓度相关的扩散系数对定向凝固枝晶生长的影响

楚硕, 郭春文, 王志军, 李俊杰, 王锦程

Effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification

Chu Shuo, Guo Chun-Wen, Wang Zhi-Jun, Li Jun-Jie, Wang Jin-Cheng
PDF
HTML
导出引用
  • 采用定量相场模型模拟了定向凝固过程中浓度相关的扩散系数对枝晶生长的影响. 模型中, 通过在液相溶质扩散方程中耦合浓度相关的扩散系数实现了浓度依赖的扩散过程. 一系列模拟结果证实了浓度相关的扩散过程对枝晶定向生长具有显著的影响. 结果表明: 溶质扩散系数对溶质浓度耦合强度的增加会增强枝晶间的溶质扩散对尖端排出的溶质原子横向扩散的抑制作用, 造成枝晶尖端固-液界面处的溶质富集程度增加, 从而增加尖端过冷度; 液相中扩散系数的改变对枝晶的尖端半径影响较小, 模拟结果与理论模型计算结果较好吻合; 液相中溶质扩散系数对溶质浓度依赖性的增加会使侧向分枝的振幅逐渐减小; 在对枝晶列的研究中发现, 与溶质浓度相关的扩散系数会增加枝晶列的一次间距, 降低稳态枝晶的尖端位置. 因此, 在浓质分配系数严重偏离1的体系中, 对现有模型的定量实验检验应考虑浓度相关的扩散对尖端过冷度的影响.
    Solute diffusion is an important process that determines the dendrite growth during solidification. The theoretical model generally simplifies the solute diffusion coefficient in liquid phase into a constant. Nevertheless, the composition of the boundary layer changes greatly in the solidification process, the diffusion coefficient will no longer be a constant and is dependent on concentration. In this paper, the quantitative phase field model is used to simulate the effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification. In the model, the concentration-dependent diffusion process is investigated by coupling the concentration-dependent diffusion coefficient in the liquid solute diffusion equation. A series of simulation results confirms that the concentration-dependent diffusion process has a significant effect on the dendrite growth. The results show that the increase of the coupling intensity of solute concentration will enhance the diffusion of solute in the mushy zone between primary dendrites to the dendrite tip, resulting in the increase of solute enrichment at the dendrite tip, thereby increasing the tip undercooling. The variation of diffusion coefficient in liquid phase has little effect on the tip radius of dendrite, and the simulation results are in good agreement with those from the theoretical model. Moreover, the amplitude of dendritic side branches decreases with the increase of solute diffusion coefficient. In the study of dendrite arrays, it is found that the concentration-dependent diffusion coefficient increases the primary spacing and reduce the tip position. The results of this study indicate that for a system with a concentration-dependent coefficient significantly, the effect of concentration-dependent diffusion on tip undercooling and side branches should be considered in the quantitative and experimental verification of the existing model.
      通信作者: 王志军, zhjwang@nwpu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB1103303)资助的课题.
      Corresponding author: Wang Zhi-Jun, zhjwang@nwpu.edu.cn
    • Funds: Project supported by National Key Research and Development Program of China (Grant No. 2017YFB1103303).
    [1]

    Bower T F, Brody H D, Flemings M C 1966 Trans. AIME 236 624

    [2]

    Burden M H, Hunt J D 1974 J. Cryst. Growth 22 109Google Scholar

    [3]

    Laxmanan V 1985 Acta Metall. 33 1023Google Scholar

    [4]

    Kurz W, Fisher D J 1981 Acta Metall. 29 11Google Scholar

    [5]

    Trivedi R 1980 J. Cryst. Growth 49 219Google Scholar

    [6]

    Shampine L F 1973 Quart. Appl. Math. 30 441Google Scholar

    [7]

    Lee J H, Liu S, Miyahara H, Trivedi R 2004 Metall. Mater. Trans. B 35B 909Google Scholar

    [8]

    Dahlborg U, Besser M, Calvo-Dahlborg M, Janssen S, Juranyi F, Kramer M J, Morris J R, Sordelet D J 2007 J. Non-Cryst. Solids 353 3295Google Scholar

    [9]

    Li J J, Wang Z J, Wang Y Q, Wang J C 2012 Acta Mater. 60 1478Google Scholar

    [10]

    Wang Z J, Li J J, Wang J C, Zhou Y H 2012 Acta Mater. 60 1957Google Scholar

    [11]

    Diepers H J, Ma D, Steinbach D M 2002 J. Cryst. Growth 237 149Google Scholar

    [12]

    王志军, 王锦程, 杨根仓 2008 物理学报 57 1246Google Scholar

    Wang Z J, Wang J C, Yang G C 2008 Acta Phys. Sin. 57 1246Google Scholar

    [13]

    Boettinger W J, Warren C, Beckermann C, Karma A 2002 Ann. Rev. Mater. Res. 32 163Google Scholar

    [14]

    Karma A 2001 Phys. Rev. Lett. 87 115701Google Scholar

    [15]

    Eechebarria B, Folch R, Karma A, Plapp M 2004 Phys. Rev. E 70 061604Google Scholar

    [16]

    Losert W, Shi B Q, Cummins H Z 1998 Proc. Acad. Sci. USA 95 431Google Scholar

    [17]

    凝固原理 (Beijing: Higher Education Press) p60

    Kurz W, Fisher D J (translated by Li J G, Hu Q D) 2010

    [18]

    Tiller W A, Jackson K A, Rutter J W, Chalmers B 1953 Acta Metall. 1 428Google Scholar

    [19]

    Spencer B J, Huppert H E 1999 J. Cryst. Growth 200 287Google Scholar

    [20]

    张云鹏, 林鑫, 魏雷, 彭东剑, 王猛, 黄卫东 2013 物理学报 62 178105Google Scholar

    Zhang Y P, Lin X, Wei L, Peng D J, Wang M, Huang W D 2013 Acta Phys. Sin. 62 178105Google Scholar

    [21]

    Hunt J D 1979 Solidification of Casting of Metals (London: The Metals Society) p3

    [22]

    Hunt J D, Lu S Z 1992 J. Cryst. Growth. 123 17Google Scholar

  • 图 1  耦合强度对枝晶尖端生长形貌的影响 (a) vp = 20 μm/s; (b) vp = 32 μm/s; (c) vp = 50 μm/s

    Fig. 1.  Effect of coupling intensities on the morphology of dendrite tip growth: (a) vp = 20 μm/s; (b) vp = 32 μm/s; (c) vp = 50 μm/s.

    图 2  vp = 32 μm/s, $\eta _0^2 = 80$时枝晶尖端前沿(实线)与边界(虚线)处液相的溶质场特征 (a)溶质场; (b)溶质浓度; (c)与浓度相关的扩散系数

    Fig. 2.  The solute field along the full line and the hidden line of the channel when vp = 32 μm/s and $\eta _0^2 = 80$: (a) Solute field; (b) solute concentration; (c) concentration-dependent diffusion coefficient.

    图 3  不同模拟条件下枝晶的尖端特征 (a)尖端半径; (b)尖端位置; (c)尖端过冷度

    Fig. 3.  The characteristics of dendrite tip with different simulated conditions: (a) Tip radius; (b) tip position; (c) tip undercooling.

    图 4  vp = 32 μm/s时不同耦合强度下枝晶尖端附近的浓度特征 (a)边界浓度; (b)尖端浓度与尖端扩散系数

    Fig. 4.  Concentration characteristics near the dendrite tip under different coupling intensities with vp = 32 μm/s: (a) Boundary concentration; (b) tip concentration and tip diffusion coefficient.

    图 5  (a1)−(a3) $\eta _0^2 = 0$时枝晶列的演化过程; (b1)−(b3) $\eta _0^2 = 80$时枝晶列的演化过程

    Fig. 5.  (a1)−(a3) The evolution of dendrite columns when $\eta _0^2 = 0$; (b1)−(b3) the evolution of dendrite columns when $\eta _0^2 = 80$.

    表 1  材料物性参数

    Table 1.  Material physical parameters.

    物性参数取值
    熔点温度/K500
    初始浓度/at.%0.01
    平衡分配系数0.3
    液相线斜率/K·at.%–1–200
    液相中的扩散系数/m2·s–10.45 × 10–9
    Gibbs-Thomson系数/K·m6.48 × 10–8
    下载: 导出CSV
  • [1]

    Bower T F, Brody H D, Flemings M C 1966 Trans. AIME 236 624

    [2]

    Burden M H, Hunt J D 1974 J. Cryst. Growth 22 109Google Scholar

    [3]

    Laxmanan V 1985 Acta Metall. 33 1023Google Scholar

    [4]

    Kurz W, Fisher D J 1981 Acta Metall. 29 11Google Scholar

    [5]

    Trivedi R 1980 J. Cryst. Growth 49 219Google Scholar

    [6]

    Shampine L F 1973 Quart. Appl. Math. 30 441Google Scholar

    [7]

    Lee J H, Liu S, Miyahara H, Trivedi R 2004 Metall. Mater. Trans. B 35B 909Google Scholar

    [8]

    Dahlborg U, Besser M, Calvo-Dahlborg M, Janssen S, Juranyi F, Kramer M J, Morris J R, Sordelet D J 2007 J. Non-Cryst. Solids 353 3295Google Scholar

    [9]

    Li J J, Wang Z J, Wang Y Q, Wang J C 2012 Acta Mater. 60 1478Google Scholar

    [10]

    Wang Z J, Li J J, Wang J C, Zhou Y H 2012 Acta Mater. 60 1957Google Scholar

    [11]

    Diepers H J, Ma D, Steinbach D M 2002 J. Cryst. Growth 237 149Google Scholar

    [12]

    王志军, 王锦程, 杨根仓 2008 物理学报 57 1246Google Scholar

    Wang Z J, Wang J C, Yang G C 2008 Acta Phys. Sin. 57 1246Google Scholar

    [13]

    Boettinger W J, Warren C, Beckermann C, Karma A 2002 Ann. Rev. Mater. Res. 32 163Google Scholar

    [14]

    Karma A 2001 Phys. Rev. Lett. 87 115701Google Scholar

    [15]

    Eechebarria B, Folch R, Karma A, Plapp M 2004 Phys. Rev. E 70 061604Google Scholar

    [16]

    Losert W, Shi B Q, Cummins H Z 1998 Proc. Acad. Sci. USA 95 431Google Scholar

    [17]

    凝固原理 (Beijing: Higher Education Press) p60

    Kurz W, Fisher D J (translated by Li J G, Hu Q D) 2010

    [18]

    Tiller W A, Jackson K A, Rutter J W, Chalmers B 1953 Acta Metall. 1 428Google Scholar

    [19]

    Spencer B J, Huppert H E 1999 J. Cryst. Growth 200 287Google Scholar

    [20]

    张云鹏, 林鑫, 魏雷, 彭东剑, 王猛, 黄卫东 2013 物理学报 62 178105Google Scholar

    Zhang Y P, Lin X, Wei L, Peng D J, Wang M, Huang W D 2013 Acta Phys. Sin. 62 178105Google Scholar

    [21]

    Hunt J D 1979 Solidification of Casting of Metals (London: The Metals Society) p3

    [22]

    Hunt J D, Lu S Z 1992 J. Cryst. Growth. 123 17Google Scholar

  • [1] 张桐鑫, 王志军, 王理林, 李俊杰, 林鑫, 王锦程. 定向凝固单晶冰的取向确定与选晶. 物理学报, 2018, 67(19): 196401. doi: 10.7498/aps.67.20180700
    [2] 康永生, 赵宇宏, 侯华, 靳玉春, 陈利文. 相场法模拟Fe-C合金定向凝固的液相通道. 物理学报, 2016, 65(18): 188102. doi: 10.7498/aps.65.188102
    [3] 孟伟东, 孙丽存, 翟影, 杨瑞芬, 普小云. 用液芯柱透镜快速测量液相扩散系数-折射率空间分布瞬态测量法. 物理学报, 2015, 64(11): 114205. doi: 10.7498/aps.64.114205
    [4] 郭春文, 李俊杰, 马渊, 王锦程. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律. 物理学报, 2015, 64(14): 148101. doi: 10.7498/aps.64.148101
    [5] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟. 物理学报, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [6] 王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东. 晶体取向对定向凝固枝晶生长的影响. 物理学报, 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [7] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型. 物理学报, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [8] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究. 物理学报, 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [9] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [10] 朱昌盛, 王军伟, 王智平, 冯力. 受迫流动下的枝晶生长相场法模拟研究. 物理学报, 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [11] 王振中, 王楠, 姚文静. 低扩散系数对Pd77Cu6Si17合金易非晶化的影响. 物理学报, 2010, 59(10): 7431-7436. doi: 10.7498/aps.59.7431
    [12] 朱昌盛, 冯力, 王智平, 肖荣振. 三维枝晶生长的相场法数值模拟研究. 物理学报, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [13] 王建元, 陈长乐, 翟薇, 金克新. 切向流动作用下SCN-3wt% H2O枝晶定向生长过程研究. 物理学报, 2009, 58(9): 6554-6559. doi: 10.7498/aps.58.6554
    [14] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 物理学报, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [15] 路 阳, 王 帆, 朱昌盛, 王智平. 等温凝固多晶粒生长相场法模拟. 物理学报, 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [16] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [17] 李梅娥, 杨根仓, 周尧和. 二元合金高速定向凝固过程的相场法数值模拟. 物理学报, 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
    [18] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 物理学报, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [19] 龙文元, 蔡启舟, 陈立亮, 魏伯康. 二元合金等温凝固过程的相场模型. 物理学报, 2005, 54(1): 256-262. doi: 10.7498/aps.54.256
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  9660
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-24
  • 修回日期:  2019-06-16
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回