搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定向凝固过程中枝晶侧向分枝生长行为与强制调控规律

郭春文 李俊杰 马渊 王锦程

引用本文:
Citation:

定向凝固过程中枝晶侧向分枝生长行为与强制调控规律

郭春文, 李俊杰, 马渊, 王锦程

Growth behaviors and forced modulation characteristics of dendritic sidebranches in directional solidification

Guo Chun-Wen, Li Jun-Jie, Ma Yuan, Wang Jin-Cheng
PDF
导出引用
  • 采用相场法数值模拟研究了定向凝固过程中随机噪声条件下枝晶侧向分枝生成行为与强制扰动条件下侧向分枝调控规律. 模拟结果表明: 随机噪声条件下, 侧向分枝整体上并无规则性, 但产生频率存在一定分布范围, 且在一定时间段内会出现生成频率一致且具有极强相关性的一组侧向分枝, 即波包; 不同波包之间不具有相关性, 但不同波包内部的侧枝生成频率基本相同, 且与侧枝整体频谱曲线峰值位置处的频率基本相当; 强制周期扰动条件下, 当扰动频率处于侧向分枝整体生成频率范围内时, 可激发枝晶产生规则侧向分枝, 且扰动频率与波包内侧枝生成频率一致时侧向分枝最发达. 研究结果可为向定向凝固枝晶形态的调控提供理论指导.
    Growth behaviors of dendritic sidebranches under random noises and characteristics of sidebranches modulated by external forces in directional solidification are studied by using phase field simulations. Simulation results show that, under random noises no regular sidebranches appears all the time, but sidebranches can be formed within a suitable range of frequencies. Moreover, strongly correlated sidebranches are formed at a fixed frequency and in a certain period, usually called a burst, to appear. There is no correlation between different bursts, but the frequency of every sidebranch within a burst is the same as its precursor, and this fixed frequency is consistent with the peak frequency of the whole spectrum of sidebranch. By introducing a time-periodic external force with a frequency in the range of the whole spectrum, regular dendritic sidebranches can be induced, and they can be most developed if the frequency of the external force is the same with that in a burst. The simulation results can provide guidance to control dendritic morphologies in solidification.
    • 基金项目: 国家自然科学基金(批准号: 51371151, 51101124)和国家重点基础研究计划(批准号: 2011CB610401)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371151, 51101124), and the National Basic Research Program of China (Grant No. 2011CB610401).
    [1]

    Pieters R, Langer J S 1986 Phys. Rev. Lett. 56 1948

    [2]

    Langer J S 1987 Phys. Rev. A 36 3350

    [3]

    Martin O, Goldenfeld N 1987 Phys. Rev. A 35 1382

    [4]

    Kessler D A, Koplik J, Levine H 1984 Phys. Rev. A 30 3161

    [5]

    van Saarloos W, Caroli B, Caroli C 1993 J. Phys. I 3 741

    [6]

    Bisang U, Bilgram J H 1996 Phys. Rev. E 54 5309

    [7]

    Dougherty A, Kaplan P D, Gollub J P 1987 Phys. Rev. Lett. 58 1652

    [8]

    Honjo H, Ohta S, Sawada Y 1985 Phys. Rev. Lett. 55 841

    [9]

    Pocheau A, Bodea S, Georgelin M 2009 Phys. Rev. E 80 031601

    [10]

    Georgelin M, Bodea S, Pocheau A 2007 Europhys. Lett. 77 46001

    [11]

    Bouissou P, Chiffaudel A, Perrin B, Tabeling P 1990 Europhys. Lett. 13 89

    [12]

    Börzsönyi T, Tóth-Katona T, Buka á, Gránásy L 1999 Phys. Rev. Lett. 83 2853

    [13]

    Börzsönyi T, Tóth-Katona T, Buha á, Gránásy L 2000 Phys. Rev. E 62 7817

    [14]

    Williams L M, Muschol M, Qian X, Losert W, Cummins H Z 1993 Phys. Rev. E 48 489

    [15]

    Kobayashi R 1993 Physica D 63 410

    [16]

    Kobayashi R 1994 Exp. Math. 3 59

    [17]

    Karma A, Lee Y H, Plapp M 2000 Phys. Rev. E 21 3996

    [18]

    Zhao D P, Jing T, Liu B C 2003 Acta Phys. Sin. 52 1737 (in Chinese) [赵代平, 荆涛, 柳百成 2003 物理学报 52 1737]

    [19]

    Boettinger W J, Warren J A 1999 J. Cryst. Growth. 200 583

    [20]

    Wang J C, Li J J, Yang Y J, Zhang Y X, Yang G C 2008 Sci. China E 38 16 (in Chinese) [王锦程, 李俊杰, 杨玉娟, 张玉祥, 杨根仓 2008 中国科学 E 38 16]

    [21]

    Greenwood M, Haataja M, Provatas N 2004 Phys. Rev. Lett. 93 246101

    [22]

    Steinbach I 2008 Acta Mater. 56 4965

    [23]

    Wang Z J, Wang J C, Yang G C 2008 Acta Phys. Sin. 57 1246 (in Chinese) [王志军, 王锦程, 杨根仓 2008 物理学报 57 1246]

    [24]

    Li J J, Wang Z J, Wang Y Q, Wang J C 2012 Acta Mater. 60 1478

    [25]

    Wang Y Q, Wang J C, Li J J 2012 Acta Phys. Sin. 61 118103 (in Chinese) [王雅琴, 王锦程, 李俊杰 2012 物理学报 61 118103]

    [26]

    Echebarria B, Karma A, Gurevich S 2010 Phys. Rev. E 81 021608

    [27]

    Steinbach I, Pezzolla F, Nestler B 1996 Physica D 94 135

    [28]

    Kim S G, Kim W T, Suzuki T 2004 J. Cryst. Growth 261 135

    [29]

    Yang X L, Dong H B, Wang W 2004 Mater. Sci. Engineer. A 386 129

  • [1]

    Pieters R, Langer J S 1986 Phys. Rev. Lett. 56 1948

    [2]

    Langer J S 1987 Phys. Rev. A 36 3350

    [3]

    Martin O, Goldenfeld N 1987 Phys. Rev. A 35 1382

    [4]

    Kessler D A, Koplik J, Levine H 1984 Phys. Rev. A 30 3161

    [5]

    van Saarloos W, Caroli B, Caroli C 1993 J. Phys. I 3 741

    [6]

    Bisang U, Bilgram J H 1996 Phys. Rev. E 54 5309

    [7]

    Dougherty A, Kaplan P D, Gollub J P 1987 Phys. Rev. Lett. 58 1652

    [8]

    Honjo H, Ohta S, Sawada Y 1985 Phys. Rev. Lett. 55 841

    [9]

    Pocheau A, Bodea S, Georgelin M 2009 Phys. Rev. E 80 031601

    [10]

    Georgelin M, Bodea S, Pocheau A 2007 Europhys. Lett. 77 46001

    [11]

    Bouissou P, Chiffaudel A, Perrin B, Tabeling P 1990 Europhys. Lett. 13 89

    [12]

    Börzsönyi T, Tóth-Katona T, Buka á, Gránásy L 1999 Phys. Rev. Lett. 83 2853

    [13]

    Börzsönyi T, Tóth-Katona T, Buha á, Gránásy L 2000 Phys. Rev. E 62 7817

    [14]

    Williams L M, Muschol M, Qian X, Losert W, Cummins H Z 1993 Phys. Rev. E 48 489

    [15]

    Kobayashi R 1993 Physica D 63 410

    [16]

    Kobayashi R 1994 Exp. Math. 3 59

    [17]

    Karma A, Lee Y H, Plapp M 2000 Phys. Rev. E 21 3996

    [18]

    Zhao D P, Jing T, Liu B C 2003 Acta Phys. Sin. 52 1737 (in Chinese) [赵代平, 荆涛, 柳百成 2003 物理学报 52 1737]

    [19]

    Boettinger W J, Warren J A 1999 J. Cryst. Growth. 200 583

    [20]

    Wang J C, Li J J, Yang Y J, Zhang Y X, Yang G C 2008 Sci. China E 38 16 (in Chinese) [王锦程, 李俊杰, 杨玉娟, 张玉祥, 杨根仓 2008 中国科学 E 38 16]

    [21]

    Greenwood M, Haataja M, Provatas N 2004 Phys. Rev. Lett. 93 246101

    [22]

    Steinbach I 2008 Acta Mater. 56 4965

    [23]

    Wang Z J, Wang J C, Yang G C 2008 Acta Phys. Sin. 57 1246 (in Chinese) [王志军, 王锦程, 杨根仓 2008 物理学报 57 1246]

    [24]

    Li J J, Wang Z J, Wang Y Q, Wang J C 2012 Acta Mater. 60 1478

    [25]

    Wang Y Q, Wang J C, Li J J 2012 Acta Phys. Sin. 61 118103 (in Chinese) [王雅琴, 王锦程, 李俊杰 2012 物理学报 61 118103]

    [26]

    Echebarria B, Karma A, Gurevich S 2010 Phys. Rev. E 81 021608

    [27]

    Steinbach I, Pezzolla F, Nestler B 1996 Physica D 94 135

    [28]

    Kim S G, Kim W T, Suzuki T 2004 J. Cryst. Growth 261 135

    [29]

    Yang X L, Dong H B, Wang W 2004 Mater. Sci. Engineer. A 386 129

  • [1] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [2] 徐小花, 陈明文, 王自东. 各向异性表面张力对定向凝固中共晶生长形态稳定性的影响. 物理学报, 2018, 67(11): 118103. doi: 10.7498/aps.67.20180186
    [3] 张桐鑫, 王志军, 王理林, 李俊杰, 林鑫, 王锦程. 定向凝固单晶冰的取向确定与选晶. 物理学报, 2018, 67(19): 196401. doi: 10.7498/aps.67.20180700
    [4] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响. 物理学报, 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [5] 康永生, 赵宇宏, 侯华, 靳玉春, 陈利文. 相场法模拟Fe-C合金定向凝固的液相通道. 物理学报, 2016, 65(18): 188102. doi: 10.7498/aps.65.188102
    [6] 陈明文, 陈弈臣, 张文龙, 刘秀敏, 王自东. 各向异性表面张力对定向凝固中深胞晶生长的影响. 物理学报, 2014, 63(3): 038101. doi: 10.7498/aps.63.038101
    [7] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟. 物理学报, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [8] 王贤斌, 林鑫, 王理林, 宇红雷, 王猛, 黄卫东. 液相对流对定向凝固胞/枝晶间距的影响. 物理学报, 2013, 62(7): 078102. doi: 10.7498/aps.62.078102
    [9] 张云鹏, 林鑫, 魏雷, 彭东剑, 王猛, 黄卫东. 界面能各向异性对定向凝固枝晶生长的影响. 物理学报, 2013, 62(17): 178105. doi: 10.7498/aps.62.178105
    [10] 王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东. 晶体取向对定向凝固枝晶生长的影响. 物理学报, 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [11] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究. 物理学报, 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [12] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [13] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 物理学报, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [14] 冯 力, 王智平, 路 阳, 朱昌盛. 二元合金多晶粒的枝晶生长的等温相场模型. 物理学报, 2008, 57(2): 1084-1090. doi: 10.7498/aps.57.1084
    [15] 陈玉娟, 陈长乐. 相场法模拟对流速度对上游枝晶生长的影响. 物理学报, 2008, 57(7): 4585-4589. doi: 10.7498/aps.57.4585
    [16] 李俊杰, 王锦程, 许 泉, 杨根仓. 外来夹杂物颗粒对枝晶生长形态影响的相场法研究. 物理学报, 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [17] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [18] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 物理学报, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [19] 李梅娥, 杨根仓, 周尧和. 二元合金高速定向凝固过程的相场法数值模拟. 物理学报, 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
    [20] 赵代平, 荆 涛, 柳百成. 相场方法模拟铝合金三维枝晶生长. 物理学报, 2003, 52(7): 1737-1742. doi: 10.7498/aps.52.1737
计量
  • 文章访问数:  2859
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-29
  • 修回日期:  2015-03-18
  • 刊出日期:  2015-07-05

定向凝固过程中枝晶侧向分枝生长行为与强制调控规律

  • 1. 西北工业大学, 凝固技术国家重点实验室, 西安 710072
    基金项目: 国家自然科学基金(批准号: 51371151, 51101124)和国家重点基础研究计划(批准号: 2011CB610401)资助的课题.

摘要: 采用相场法数值模拟研究了定向凝固过程中随机噪声条件下枝晶侧向分枝生成行为与强制扰动条件下侧向分枝调控规律. 模拟结果表明: 随机噪声条件下, 侧向分枝整体上并无规则性, 但产生频率存在一定分布范围, 且在一定时间段内会出现生成频率一致且具有极强相关性的一组侧向分枝, 即波包; 不同波包之间不具有相关性, 但不同波包内部的侧枝生成频率基本相同, 且与侧枝整体频谱曲线峰值位置处的频率基本相当; 强制周期扰动条件下, 当扰动频率处于侧向分枝整体生成频率范围内时, 可激发枝晶产生规则侧向分枝, 且扰动频率与波包内侧枝生成频率一致时侧向分枝最发达. 研究结果可为向定向凝固枝晶形态的调控提供理论指导.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回