-
采用类金属透明模型合金丁二腈-1.8 wt%丙酮(SCN-1.8 wt%Ace)合金, 研究了平行于生长界面前沿的液相对流对定向凝固胞/枝晶生长行为及胞/枝晶间距的影响. 对于胞晶生长, 在液相对流作用下, 其尖端将会出现分岔, 使得胞晶间距减小, 并且液相对流流速越大, 胞晶尖端分岔越明显, 胞晶组织越细小, 胞晶间距越小. 至于枝晶生长, 其生长行为与胞晶不同. 当抽拉速度较小时, 液相对流作用下枝晶两侧三次臂的生长速度将会超过枝晶尖端生长速度, 形成新的枝晶列, 使得枝晶一次间距减小, 并且液相对流流速越大枝晶一次间距越小; 当抽拉速度较大时, 液相对流作用下迎流侧二次臂生长发达,且会抑制上游枝晶生长, 使得枝晶一次间距增大, 并且液相对流越强枝晶一次间距越大.The cellular and dendritic formations are two kinds of typical morphology in the solidification, and there are many theoretical models and experimental researches on them. Most models and researches are based on purely diffusive transport mechanism. However, convection effects are of importance in the evolution of cellular and dendritic growth. Since the metal materials are not transparency and the researches on microstructure only after quenching, it is difficult to observe the dynamic microstructure evolution in real time. In this paper, the effect of liquid flow on the cellular and dendritic growth was investigated by the in-situ observation of SCN-1.8 wt% Ace transparent alloy during the directional solidification under the liquid flow. The cellular tip splitting is found in the presence of liquid flow and the cellular microstructure is smaller after the cellular tip splitting. The cellular spacing decreases as the flow rate becomes larger, but the spacing will become steady ultimately. At high growth rate the dendritic spacing increases with the increase of the flow rate, because the upstream side branches, which are accelerated by liquid flow, will suppress adjacent branches. But, at low growth rate the dendritic spacing decreases with the increase of the flow rate, because the lateral branches will exceed the tip of dendrite to form new dendrite by liquid flow.
-
Keywords:
- directional solidification /
- cellular spacing /
- dendrite spacing /
- liquid flow
[1] Kurz W, Fisher D J 1986 Fundamentals of solidification (3rd Edn.) (Switzerland: Trans Tech Publications Ltd) p23
[2] Billia B, Trivedi R 1993 Handbook of crystal growth (London: North-holland) p1007
[3] Eshelman M A, Seetharaman V, Trivedi R 1988 Acta Metall. 36 1165
[4] Suk M J, Park Y M, Kim Y D 2007 Scripta Mater. 57 985
[5] Kaya H, Cadirli E, Keslioglu K, Marasli N 2005 J. Crstal. Growth 276 583
[6] Hansen G, Liu S, Lu S Z, Hellawell A 2002 J. Cryst. Growth 234 731
[7] Laxmanan V 1998 Scipta Mater. 38 1289
[8] Seetharaman V, Eshelman M A, Trivedi R 1988 Acta Metall. 30 1175
[9] Gunduz M, Cadirli E 2002 Mater. Sci. Eng. A 327 167
[10] Burden M H, Hunt J D 1974 J. Cryst. Growth 22 99
[11] Hunt J D 1979 Solidification and Casting of Metals (London: Metals Society) p35
[12] Kurz W, Fisher D J 1981 Acta Metall. 29 11
[13] Trivedi R 1984 Metall. Trans. A 15 977
[14] Hunt J D, Lu S Z 1996 Metall. Mater. Trans. A 27 611
[15] Lin X, Li Y M, Liu Z X, Li T, Huang W D 2001 Sci. Techn. Adv. Mater. 2 293
[16] Liu S, Lu D Y, Huang T, Zhou Y H 1993 Acta Metall Sin. 29 147 (in Chinese) [刘山, 鲁德洋, 黄韬, 周尧和 1993 金属学报 29 147]
[17] Trivedi R, Mazumder P, Tewari S N 2002 J. Cryst. Growth 222 365
[18] Spinelli J E, Rosa D M, Ferreira I L 2004 Mater. Sci. Eng. A 383 271
[19] Sun D K, Zhu M F, Yang C R, Pan S Y, Dai T 2009 Acta Phys. Sin. 58 S285 (in Chinese) [孙东科, 朱明芳, 杨朝蓉, 潘诗琰, 戴挺 2009 物理学报 58 S285]
[20] Shi Y F, Xu Q Y, Liu B C 2011 Acta Phys. Sin. 60 126101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2011 物理学报 60 126101]
[21] Wang J Y, Zhai W, Jin K X, Chen C L 2011 Acta Phys. Sin. 60 098106 (in Chinese) [王建元, 翟薇, 金克新, 陈长乐 2011 物理学报 60 098106]
[22] Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin. 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 物理学报 58 6554]
-
[1] Kurz W, Fisher D J 1986 Fundamentals of solidification (3rd Edn.) (Switzerland: Trans Tech Publications Ltd) p23
[2] Billia B, Trivedi R 1993 Handbook of crystal growth (London: North-holland) p1007
[3] Eshelman M A, Seetharaman V, Trivedi R 1988 Acta Metall. 36 1165
[4] Suk M J, Park Y M, Kim Y D 2007 Scripta Mater. 57 985
[5] Kaya H, Cadirli E, Keslioglu K, Marasli N 2005 J. Crstal. Growth 276 583
[6] Hansen G, Liu S, Lu S Z, Hellawell A 2002 J. Cryst. Growth 234 731
[7] Laxmanan V 1998 Scipta Mater. 38 1289
[8] Seetharaman V, Eshelman M A, Trivedi R 1988 Acta Metall. 30 1175
[9] Gunduz M, Cadirli E 2002 Mater. Sci. Eng. A 327 167
[10] Burden M H, Hunt J D 1974 J. Cryst. Growth 22 99
[11] Hunt J D 1979 Solidification and Casting of Metals (London: Metals Society) p35
[12] Kurz W, Fisher D J 1981 Acta Metall. 29 11
[13] Trivedi R 1984 Metall. Trans. A 15 977
[14] Hunt J D, Lu S Z 1996 Metall. Mater. Trans. A 27 611
[15] Lin X, Li Y M, Liu Z X, Li T, Huang W D 2001 Sci. Techn. Adv. Mater. 2 293
[16] Liu S, Lu D Y, Huang T, Zhou Y H 1993 Acta Metall Sin. 29 147 (in Chinese) [刘山, 鲁德洋, 黄韬, 周尧和 1993 金属学报 29 147]
[17] Trivedi R, Mazumder P, Tewari S N 2002 J. Cryst. Growth 222 365
[18] Spinelli J E, Rosa D M, Ferreira I L 2004 Mater. Sci. Eng. A 383 271
[19] Sun D K, Zhu M F, Yang C R, Pan S Y, Dai T 2009 Acta Phys. Sin. 58 S285 (in Chinese) [孙东科, 朱明芳, 杨朝蓉, 潘诗琰, 戴挺 2009 物理学报 58 S285]
[20] Shi Y F, Xu Q Y, Liu B C 2011 Acta Phys. Sin. 60 126101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2011 物理学报 60 126101]
[21] Wang J Y, Zhai W, Jin K X, Chen C L 2011 Acta Phys. Sin. 60 098106 (in Chinese) [王建元, 翟薇, 金克新, 陈长乐 2011 物理学报 60 098106]
[22] Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin. 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 物理学报 58 6554]
计量
- 文章访问数: 6068
- PDF下载量: 460
- 被引次数: 0