搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯醇水溶液二维定向凝固的微观组织演化

贾琳 王理林 申洁楠 张忠明 李俊杰 王锦程 王志军

引用本文:
Citation:

聚乙烯醇水溶液二维定向凝固的微观组织演化

贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军

Microstructure evolution of polyvinyl alcohol aqueous solution solidated in two-dimensional direction

Jia Lin, Wang Li-Lin, Shen Jie-Nan, Zhang Zhong-Ming, Li Jun-Jie, Wang Jin-Cheng, Wang Zhi-Jun
PDF
导出引用
  • 为了深入探究定向多孔聚合物材料的微观组织形成机理,利用定向凝固原位实时观察手段,研究不同浓度及不同分子量聚乙烯醇(PVA)水溶液在不同抽拉速度下的定向凝固形貌演化.PVA水溶液的定向凝固形态在低浓度(1 wt%,2.5 wt%)和小分子量(Mw=24000)情况下,一次枝晶间距随着抽拉速度的增加而减小.随着PVA浓度和分子量的增加,一次枝晶间距随抽拉速度变化不明显,枝晶主轴尺寸则随速度增加呈现减小的趋势.与传统凝固形态形成机理相比,PVA水溶液的凝固形态由PVA分子的扩散引起的凝固界面不稳定性机理和PVA高分子链交联引起的局部相分离机理竞争决定.
    Porous polymers have received much attention in recent years because of their light quality,high strength,good permeability and easy-revisable.Various fabrication methods of porous polymers have been used in which ice templating is a process which can prepare porous materials with complex structures and fine microstructures.This method has been widely used to prepare porous polymers but it still has many problems,such as poor homogeneity of pore distribution and pore connectivity.To solve these problems,it is necessary to understand the morphology of ice crystal growth in the solidification process of polymer solution.In situ observation of directional solidification is adopted in this paper to study the morphology evolution during directional solidification of polyvinyl alcohol (PVA) aqueous solution with different concentrations and molecular weights under different pulling speeds.The experimental results show that the primary dendrite spacing of PVA aqueous solution decreases with the increase of pulling speed at low concentration (1 wt%,2.5 wt%).However,increasing PVA concentration does not result in significant change in primary dendrite spacing.The primary dendrite spacing varies with pulling speed whereas the dendritic primary arm tends to shrink with increasing velocity.The effects of PVA concentration and pulling speed on morphology are partly because of diffusion instability from the classical solidification theory.When the concentration of solution is 5 wt%,there is little change of primary dendrite spacing with the velocity,which is due to the suppressed diffusion instability by high concentration of the polymer solution and large viscosity.When the concentration of solution increases to 10 wt%,ice crystal morphology is seaweed-like,where the PVA molecules are enriched and crosslinked ahead the ice crystal,leading to the continuous bifurcation of the dendrites.For the solidification morphologies of the aqueous solutions with different PVA molecular weights,the primary dendrite spacing of PVA aqueous solution decreases with the increase of pulling speed at low molecular weight (Mw=24000).Increasing PVA molecular weight does not result in significant change in primary dendrite spacing.At the low PVA molecular weight,the interface shows cell morphology.With the increase of PVA molecular weight,the large chain length leads to the stronger interaction among them and suppressing their diffusion. The corresponding constitutional undercooling is strengthened,thereby promoting the interfacial instability and dendrite formation.From the classical solidification morphology formation mechanism it may be concluded that the solidification morphology of PVA aqueous solution is determined by the competition between the two different mechanisms,i.e., interface instability induced by diffusion of PVA molecule and the local phase separation from the crosslinking of PVA polymer chains.
      通信作者: 王志军, zhjwang@nwpu.edu.cn
    • 基金项目: 凝固技术国家重点实验室(批准号:158-QP-2016,SKLSP201627)资助的课题.
      Corresponding author: Wang Zhi-Jun, zhjwang@nwpu.edu.cn
    • Funds: Project supported by State Key Laboratory of Solidification Processing, China (Grant Nos. 158-QP-2016, SKLSP201627).
    [1]

    Liu Q, Tang Z, Ou B, Zhou Z 2014 Mater. Chem. Phys. 144 213

    [2]

    Nemoto J, Uraki Y, Kishimoto T, Sano Y, Funada R, Obata N, Yabu H, Tanaka M, Shimomura M 2005 Bioresour. Technol. 96 1955

    [3]

    Adiga S P, Jin C, Curtiss L A, Monteriro-Riviere N A, Narayan R J 2009 Wires. Nanomed. Nanobi. 1 568

    [4]

    Colombo P 2006 Philos. Trans. R. Soc. London Ser. A 364 109

    [5]

    Karimi A, Wan M A W D 2015 Polym. Compos. 38 1135

    [6]

    Colosi C, Costantini M, Barbetta A, Pecci R, Bedini R, Dentini M 2012 Langmuir 29 82

    [7]

    Holloway J L, Lowman A M, Palmese G R 2013 Soft Matter 9 826

    [8]

    Li X, Kanjwal M A, Lin L, Chronakis L S 2013 Colloids Surf. B 103 182

    [9]

    Jiang X R, Guan J, Chen X, Shao Z Z 2010 Acta Chim. Sin. 68 1909 (in Chinese)[江霞蓉, 管娟, 陈新, 邵正中 2010 化学学报 68 1909]

    [10]

    Deville S 2008 Adv. Eng. Mater. 10 155

    [11]

    Deville S, Saiz E, Nalla R K, Tomsia A P 2006 Science 311 515

    [12]

    Deville S 2010 Materials 3 1913

    [13]

    Fukasawa T, Deng Z Y, Ando M, Ohji T, Goto Y 2001 J. Mater. Sci. 36 2523

    [14]

    Delattre B, Bai H, Ritchie R O, Coninck J D, Tomsia A P 2013 ACS Appl. Mater. Inter. 6 159

    [15]

    Kim S S, Seo I S, Yeum J H, Ji B C, Kim J H, Kwak J W, Yoon W S, Noh S K, Lyoo W S 2004 J. Appl. Polym. Sci. 92 1426

    [16]

    Ren L, Zeng Y P, Jiang D 2009 Ceram. Int. 35 1267

    [17]

    Zhang H, Hussain I, Brust M, Butler M F, Rannard S P, Cooper A I 2005 Nat. Mater. 4 787

    [18]

    Zhang H, Cooper A I 2007 Adv. Mater. 19 1529

    [19]

    Gutirrez M C, Garca-Carvajal Z Y, Jobbgy M, Rubio F, Yuste L, Rojo F, Ferrer M L, Monte F D 2007 Adv. Funct. Mat. 17 3505

    [20]

    Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J 2010 Acta Biomater. 6 1167

    [21]

    Qian L, Zhang H 2011 J. Chem. Technol. Biotechnol. 86 172

    [22]

    Wang L L, Wang X B, Wang H Y, Lin X, Huang W D 2012 Acta Phys. Sin. 61 148104 (in Chinese)[王理林, 王贤斌, 王红艳, 林鑫, 黄卫东 2012 物理学报 61 148104]

    [23]

    Yu H L, Lin X, Li J J, Wang L L, Huang W D 2013 Acta Metall. Sin. 49 58 (in Chinese)[宇红雷, 林鑫, 李俊杰, 王理林, 黄卫东 2013 金属学报 49 58]

    [24]

    You J, Wang L, Wang Z, Li J, Wang J 2015 Rev. Sci. Instrum. 86 084901

    [25]

    Wang X B, Lin X, Wang L L, Bai B B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese)[王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 物理学报 62 108103]

    [26]

    Zhang L, Zhao J, Zhu J, He C, Wang H 2012 Soft Matter 40 10447

    [27]

    He H 2012 Ph. D. Dissertation (Chongqing:Chongqing University) (in Chinese)[何洪 2012 博士学位论文 (重庆:重庆大学)]

    [28]

    Doi M 2013 Soft Matter Physics (New York:Oxford University Press) p145

    [29]

    Utter B, Ragnarsson R, Bodenschatz E 2001 Phys. Rev. E 72 011601

    [30]

    Li J J, Wang J C, Xu Q, Yang G C 2007 Acta Phys. Sin. 56 1514 (in Chinese)[李俊杰, 王锦程, 许泉, 杨根仓 2007 物理学报 56 1514]

    [31]

    Gao H W, Yang R J, He J Y, et al. 2010 Acta Polym. Sin. 5 542 (in Chinese)[高瀚文, 杨荣杰, 何吉宇, 等 2010 高分子学报 5 542]

  • [1]

    Liu Q, Tang Z, Ou B, Zhou Z 2014 Mater. Chem. Phys. 144 213

    [2]

    Nemoto J, Uraki Y, Kishimoto T, Sano Y, Funada R, Obata N, Yabu H, Tanaka M, Shimomura M 2005 Bioresour. Technol. 96 1955

    [3]

    Adiga S P, Jin C, Curtiss L A, Monteriro-Riviere N A, Narayan R J 2009 Wires. Nanomed. Nanobi. 1 568

    [4]

    Colombo P 2006 Philos. Trans. R. Soc. London Ser. A 364 109

    [5]

    Karimi A, Wan M A W D 2015 Polym. Compos. 38 1135

    [6]

    Colosi C, Costantini M, Barbetta A, Pecci R, Bedini R, Dentini M 2012 Langmuir 29 82

    [7]

    Holloway J L, Lowman A M, Palmese G R 2013 Soft Matter 9 826

    [8]

    Li X, Kanjwal M A, Lin L, Chronakis L S 2013 Colloids Surf. B 103 182

    [9]

    Jiang X R, Guan J, Chen X, Shao Z Z 2010 Acta Chim. Sin. 68 1909 (in Chinese)[江霞蓉, 管娟, 陈新, 邵正中 2010 化学学报 68 1909]

    [10]

    Deville S 2008 Adv. Eng. Mater. 10 155

    [11]

    Deville S, Saiz E, Nalla R K, Tomsia A P 2006 Science 311 515

    [12]

    Deville S 2010 Materials 3 1913

    [13]

    Fukasawa T, Deng Z Y, Ando M, Ohji T, Goto Y 2001 J. Mater. Sci. 36 2523

    [14]

    Delattre B, Bai H, Ritchie R O, Coninck J D, Tomsia A P 2013 ACS Appl. Mater. Inter. 6 159

    [15]

    Kim S S, Seo I S, Yeum J H, Ji B C, Kim J H, Kwak J W, Yoon W S, Noh S K, Lyoo W S 2004 J. Appl. Polym. Sci. 92 1426

    [16]

    Ren L, Zeng Y P, Jiang D 2009 Ceram. Int. 35 1267

    [17]

    Zhang H, Hussain I, Brust M, Butler M F, Rannard S P, Cooper A I 2005 Nat. Mater. 4 787

    [18]

    Zhang H, Cooper A I 2007 Adv. Mater. 19 1529

    [19]

    Gutirrez M C, Garca-Carvajal Z Y, Jobbgy M, Rubio F, Yuste L, Rojo F, Ferrer M L, Monte F D 2007 Adv. Funct. Mat. 17 3505

    [20]

    Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J 2010 Acta Biomater. 6 1167

    [21]

    Qian L, Zhang H 2011 J. Chem. Technol. Biotechnol. 86 172

    [22]

    Wang L L, Wang X B, Wang H Y, Lin X, Huang W D 2012 Acta Phys. Sin. 61 148104 (in Chinese)[王理林, 王贤斌, 王红艳, 林鑫, 黄卫东 2012 物理学报 61 148104]

    [23]

    Yu H L, Lin X, Li J J, Wang L L, Huang W D 2013 Acta Metall. Sin. 49 58 (in Chinese)[宇红雷, 林鑫, 李俊杰, 王理林, 黄卫东 2013 金属学报 49 58]

    [24]

    You J, Wang L, Wang Z, Li J, Wang J 2015 Rev. Sci. Instrum. 86 084901

    [25]

    Wang X B, Lin X, Wang L L, Bai B B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese)[王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 物理学报 62 108103]

    [26]

    Zhang L, Zhao J, Zhu J, He C, Wang H 2012 Soft Matter 40 10447

    [27]

    He H 2012 Ph. D. Dissertation (Chongqing:Chongqing University) (in Chinese)[何洪 2012 博士学位论文 (重庆:重庆大学)]

    [28]

    Doi M 2013 Soft Matter Physics (New York:Oxford University Press) p145

    [29]

    Utter B, Ragnarsson R, Bodenschatz E 2001 Phys. Rev. E 72 011601

    [30]

    Li J J, Wang J C, Xu Q, Yang G C 2007 Acta Phys. Sin. 56 1514 (in Chinese)[李俊杰, 王锦程, 许泉, 杨根仓 2007 物理学报 56 1514]

    [31]

    Gao H W, Yang R J, He J Y, et al. 2010 Acta Polym. Sin. 5 542 (in Chinese)[高瀚文, 杨荣杰, 何吉宇, 等 2010 高分子学报 5 542]

  • [1] 安涛, 薛佳伟, 王永强. 基于苯并二噻吩聚合物所制备的三元光电探测器的特性. 物理学报, 2021, 70(5): 058801. doi: 10.7498/aps.70.20201185
    [2] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [3] 徐小花, 陈明文, 王自东. 各向异性表面张力对定向凝固中共晶生长形态稳定性的影响. 物理学报, 2018, 67(11): 118103. doi: 10.7498/aps.67.20180186
    [4] 张桐鑫, 王志军, 王理林, 李俊杰, 林鑫, 王锦程. 定向凝固单晶冰的取向确定与选晶. 物理学报, 2018, 67(19): 196401. doi: 10.7498/aps.67.20180700
    [5] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二). 物理学报, 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [6] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响. 物理学报, 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [7] 康永生, 赵宇宏, 侯华, 靳玉春, 陈利文. 相场法模拟Fe-C合金定向凝固的液相通道. 物理学报, 2016, 65(18): 188102. doi: 10.7498/aps.65.188102
    [8] 郭春文, 李俊杰, 马渊, 王锦程. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律. 物理学报, 2015, 64(14): 148101. doi: 10.7498/aps.64.148101
    [9] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟. 物理学报, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [10] 陈明文, 陈弈臣, 张文龙, 刘秀敏, 王自东. 各向异性表面张力对定向凝固中深胞晶生长的影响. 物理学报, 2014, 63(3): 038101. doi: 10.7498/aps.63.038101
    [11] 王贤斌, 林鑫, 王理林, 宇红雷, 王猛, 黄卫东. 液相对流对定向凝固胞/枝晶间距的影响. 物理学报, 2013, 62(7): 078102. doi: 10.7498/aps.62.078102
    [12] 白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东. 抽拉速度对SCN-DC共晶生长形貌的影响. 物理学报, 2013, 62(21): 218103. doi: 10.7498/aps.62.218103
    [13] 王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东. 晶体取向对定向凝固枝晶生长的影响. 物理学报, 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [14] 王理林, 王贤斌, 王红艳, 林鑫, 黄卫东. 晶体取向对定向凝固平界面失稳行为的影响. 物理学报, 2012, 61(14): 148104. doi: 10.7498/aps.61.148104
    [15] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究. 物理学报, 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [16] 石玉峰, 许庆彦, 柳百成. 对流作用下枝晶形貌演化的数值模拟和实验研究. 物理学报, 2011, 60(12): 126101. doi: 10.7498/aps.60.126101
    [17] 王建元, 陈长乐, 翟薇, 金克新. 切向流动作用下SCN-3wt% H2O枝晶定向生长过程研究. 物理学报, 2009, 58(9): 6554-6559. doi: 10.7498/aps.58.6554
    [18] 王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志. Ti-45at.% Al合金定向凝固过程中显微组织演化的计算机模拟. 物理学报, 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [19] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [20] 李梅娥, 杨根仓, 周尧和. 二元合金高速定向凝固过程的相场法数值模拟. 物理学报, 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
计量
  • 文章访问数:  6669
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-14
  • 修回日期:  2017-07-05
  • 刊出日期:  2017-10-05

/

返回文章
返回