搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定向凝固单晶冰的取向确定与选晶

张桐鑫 王志军 王理林 李俊杰 林鑫 王锦程

引用本文:
Citation:

定向凝固单晶冰的取向确定与选晶

张桐鑫, 王志军, 王理林, 李俊杰, 林鑫, 王锦程

Orientation determination and manipulation of single ice crystal via unidirectional solidification

Zhang Tong-Xin, Wang Zhi-Jun, Wang Li-Lin, Li Jun-Jie, Lin Xin, Wang Jin-Cheng
PDF
导出引用
  • 基于六方冰晶偏振光学特性,定义了用于确定冰晶晶体取向的三个参数:光轴倾角α,消光角β和与冰晶基面(0001)面内晶体学择优方向〈1120〉与温度梯度的夹角γ,提出了定量判定冰晶晶体取向的理论基础,并在定向凝固平台上采用偏光显微镜成功实现了冰晶晶体取向的精确主动控制,获得了任意取向的单晶冰.本文成功解决了冰晶的定向凝固晶体取向确定和选择的难题,为冰晶生长过程中相关理论问题的研究提供了有效的途径.
    The growth of ice crystal has been widely investigated by researchers from various fields, but efficient method that can meet the experimental requirements for identifying and reproducing the ice crystal with specific orientation is still lacking. In this paper, an ice crystal can be characterized with unique orientation information, where tilt angle of optical axis α, extinction angle β and the angle γ relative to preferred orientation 〈1120〉 in the basal plane (0001) and the direction of temperature gradient G are determined based on the properties of optic polarization of hexagonal ice in the directional solidification. An integrated criterion for determining the orientation of hexagonal ice is proposed by combining the crystal optics and solidification interface morphology. Precise manipulation of the orientation of single ice crystal is achieved by using a step-by-step method via a unidirectional platform combined with a polarized optical microscope. Three coordinate systems are established to achieve the manipulation of ice. They are the microscope coordinate system termed as “A-P-L”, where A, P and L refer to the directions of analyzer, polarizer and incident beam of the optical microscope, respectively, the specimen box coordinate system named “xyz”, and the crystallographic coordinate system described by the optical axis and 〈1120〉 in the basal plane (0001). Ice crystals are all confined in a series of glass specimen boxes filled with KCl solution (0.2 mol/L) and the growth sequence of the single ice crystal from one specimen box to another is specially designed to ensure the specific orientation relations among specimen boxes, and the orientation relations among the specimen boxes are adjusted according to the integrated criterion. Single ice crystals with three typical orientations (α3=90°, β3 a=0°; α3=90°, β3b=90°; α4=90°, β4 dose not exist, γ ≈ 33°) relative to the microscope coordinate A-P-L are obtained, and their morphological characteristics of S/L interface are observed in situ under different pulling velocities (10.3 μm/s, 13.4 μm/s and 100 μm/s, respectively). In this paper we successfully solve the problem of orientation determination and manipulation of ice orientation in the study of directional solidification of ice crystal, which may provide an effective experimental approach for investigating the theoretical problems concerning ice crystal growth.
      通信作者: 王志军, zhjwang@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51701155)、陕西省自然科学基金(批准号:2017JM5112)和凝固技术国家重点实验室(批准号:158-QP-2016,SKLSP201627)资助的课题.
      Corresponding author: Wang Zhi-Jun, zhjwang@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51701155), Natural Science Foundation of Shaanxi Province of China (Grant No. 2017JM5112), and State Key Laboratory of Solidification Processing, China (Grant Nos. 158-QP-2016, SKLSP201627).
    [1]

    Ma J, Hung H, Tian C, Kallenborn R 2011 Nat. Clim. Change 1 255

    [2]

    Fu Q, Hou R, Li T, Jiang R, Yan P, Ma Z, Zhou Z 2018 Sci. Rep. 8 1325

    [3]

    Furukawa Y, Nagashima K, Nakatsubo SI, Yoshizaki I, Tamaru H, Shimaoka T, Sone T, Yokoyama E, Zepeda S, Terasawa T, Asakawa H, Murata K I, Sazaki G 2017 Sci. Rep. 7 43157

    [4]

    Petrenko V, Whitworth R 2002 Physics of Ice (New York:Oxford University Press) pp3-4, 24-30

    [5]

    Morris C E, Sands D C, Vinatzer B A, Glaux C, Guilbaud C, Buffière A, Yan S, Dominguez H, Thompson B M 2008 ISME J. 2 321

    [6]

    Deville S, Nalla R K 2006 Science 312 1312

    [7]

    Anesio A M, Lutz S, Chrismas N A M, Benning L G 2017 Npj Biofilms Microbiomes 3 10

    [8]

    Xu X Z, Wang J C, Zhang L X 2001 Physics of Frozen Soil (Beijing:Science Press) pp1-4 (in Chinese) [徐学祖, 王家澄, 张立新 2001 冻土物理学 (北京:科学出版社) 第1–4页]

    [9]

    Dachs J 2011 Nat. Clim. Change 1 247

    [10]

    Libbrecht K G 2001 Eng. Sci. 64 10

    [11]

    Furukawa Y, Shimada W 1993 J. Cryst. Growth 128 234

    [12]

    Macklin W C, Ryan B F 1965 J. Atmos. Sci. 22 452

    [13]

    Singer H M 2006 Phys. Rev. E 73 051606

    [14]

    Shibkov A A, Golovin Y I, Zheltov M A, Korolev A A, Leonov A A 2003 Physica A 319 65

    [15]

    Thomas D N, Dieckmann G S 2003 Sea Ice:An Introduction to its Physics, Chemistry, Biology and Geology (Blackwell:John Wiley & Sons) p24

    [16]

    Saruya T, Kurita K, Rempel A W 2013 Phys. Rev. E 87 9

    [17]

    Deville S 2017 Scr. Mater. 147 119

    [18]

    Rudolph P 2014 Handbook of Crystal Growth:Bulk Crystal Growth (USA:Elsevier) pp46-47, 414-415

    [19]

    Harrison J D, Tiller W A 1963 J. Appl. Phys. 34 3349

    [20]

    Bai H, Chen Y, Delattre B, Tomsia A P, Ritchie R O 2015 Sci. Adv. 1 e1500849

    [21]

    Deville S, Adrien J, Maire E, Scheel M, Di Michiel M 2013 Acta Mater. 61 2077

    [22]

    Lasalle A, Guizard C, Maire E, Adrien J, Deville S 2012 Acta Mater. 60 4594

    [23]

    Deville S, Maire E, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C 2009 J. Am. Ceram. Soc. 92 2497

    [24]

    Zhao L S, Pan L Q, Ji A L, Cao Z X, Wang Q 2016 Chin. Phys. B 25 075101

    [25]

    Jia L, Wang L L, Shen J N, Zhang Z M, Li J J, Wang J C, Wang Z J 2017 Acta Phys. Sin. 66 196402 (in Chinese) [贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军 2017 物理学报 66 196402]

    [26]

    Wang X 2014 Crystal Optics (Nanjing:Nanjing University Press) pp9-13, 43-51 (in Chinese) [汪相 2014 晶体光学·彩色第2版(南京:南京大学出版社) 第 9-13 页, 第43-51 页]

    [27]

    Nagashima K, Furukawa Y 1997 J. Cryst. Growth 171 577

    [28]

    Wang Z J, Li J J, Wang J C 2011 J. Cryst. Growth 328 108

    [29]

    Gosting L J 1950 J. Am. Chem. Soc. 72 4418

  • [1]

    Ma J, Hung H, Tian C, Kallenborn R 2011 Nat. Clim. Change 1 255

    [2]

    Fu Q, Hou R, Li T, Jiang R, Yan P, Ma Z, Zhou Z 2018 Sci. Rep. 8 1325

    [3]

    Furukawa Y, Nagashima K, Nakatsubo SI, Yoshizaki I, Tamaru H, Shimaoka T, Sone T, Yokoyama E, Zepeda S, Terasawa T, Asakawa H, Murata K I, Sazaki G 2017 Sci. Rep. 7 43157

    [4]

    Petrenko V, Whitworth R 2002 Physics of Ice (New York:Oxford University Press) pp3-4, 24-30

    [5]

    Morris C E, Sands D C, Vinatzer B A, Glaux C, Guilbaud C, Buffière A, Yan S, Dominguez H, Thompson B M 2008 ISME J. 2 321

    [6]

    Deville S, Nalla R K 2006 Science 312 1312

    [7]

    Anesio A M, Lutz S, Chrismas N A M, Benning L G 2017 Npj Biofilms Microbiomes 3 10

    [8]

    Xu X Z, Wang J C, Zhang L X 2001 Physics of Frozen Soil (Beijing:Science Press) pp1-4 (in Chinese) [徐学祖, 王家澄, 张立新 2001 冻土物理学 (北京:科学出版社) 第1–4页]

    [9]

    Dachs J 2011 Nat. Clim. Change 1 247

    [10]

    Libbrecht K G 2001 Eng. Sci. 64 10

    [11]

    Furukawa Y, Shimada W 1993 J. Cryst. Growth 128 234

    [12]

    Macklin W C, Ryan B F 1965 J. Atmos. Sci. 22 452

    [13]

    Singer H M 2006 Phys. Rev. E 73 051606

    [14]

    Shibkov A A, Golovin Y I, Zheltov M A, Korolev A A, Leonov A A 2003 Physica A 319 65

    [15]

    Thomas D N, Dieckmann G S 2003 Sea Ice:An Introduction to its Physics, Chemistry, Biology and Geology (Blackwell:John Wiley & Sons) p24

    [16]

    Saruya T, Kurita K, Rempel A W 2013 Phys. Rev. E 87 9

    [17]

    Deville S 2017 Scr. Mater. 147 119

    [18]

    Rudolph P 2014 Handbook of Crystal Growth:Bulk Crystal Growth (USA:Elsevier) pp46-47, 414-415

    [19]

    Harrison J D, Tiller W A 1963 J. Appl. Phys. 34 3349

    [20]

    Bai H, Chen Y, Delattre B, Tomsia A P, Ritchie R O 2015 Sci. Adv. 1 e1500849

    [21]

    Deville S, Adrien J, Maire E, Scheel M, Di Michiel M 2013 Acta Mater. 61 2077

    [22]

    Lasalle A, Guizard C, Maire E, Adrien J, Deville S 2012 Acta Mater. 60 4594

    [23]

    Deville S, Maire E, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C 2009 J. Am. Ceram. Soc. 92 2497

    [24]

    Zhao L S, Pan L Q, Ji A L, Cao Z X, Wang Q 2016 Chin. Phys. B 25 075101

    [25]

    Jia L, Wang L L, Shen J N, Zhang Z M, Li J J, Wang J C, Wang Z J 2017 Acta Phys. Sin. 66 196402 (in Chinese) [贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军 2017 物理学报 66 196402]

    [26]

    Wang X 2014 Crystal Optics (Nanjing:Nanjing University Press) pp9-13, 43-51 (in Chinese) [汪相 2014 晶体光学·彩色第2版(南京:南京大学出版社) 第 9-13 页, 第43-51 页]

    [27]

    Nagashima K, Furukawa Y 1997 J. Cryst. Growth 171 577

    [28]

    Wang Z J, Li J J, Wang J C 2011 J. Cryst. Growth 328 108

    [29]

    Gosting L J 1950 J. Am. Chem. Soc. 72 4418

  • [1] 方辉, 薛桦, 汤倩玉, 张庆宇, 潘诗琰, 朱鸣芳. 温度梯度区域熔化作用下熔池迁移的元胞自动机模拟. 物理学报, 2019, 68(4): 048102. doi: 10.7498/aps.68.20181587
    [2] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [3] 徐小花, 陈明文, 王自东. 各向异性表面张力对定向凝固中共晶生长形态稳定性的影响. 物理学报, 2018, 67(11): 118103. doi: 10.7498/aps.67.20180186
    [4] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响. 物理学报, 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [5] 贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军. 聚乙烯醇水溶液二维定向凝固的微观组织演化. 物理学报, 2017, 66(19): 196402. doi: 10.7498/aps.66.196402
    [6] 康永生, 赵宇宏, 侯华, 靳玉春, 陈利文. 相场法模拟Fe-C合金定向凝固的液相通道. 物理学报, 2016, 65(18): 188102. doi: 10.7498/aps.65.188102
    [7] 郭春文, 李俊杰, 马渊, 王锦程. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律. 物理学报, 2015, 64(14): 148101. doi: 10.7498/aps.64.148101
    [8] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟. 物理学报, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [9] 陈明文, 陈弈臣, 张文龙, 刘秀敏, 王自东. 各向异性表面张力对定向凝固中深胞晶生长的影响. 物理学报, 2014, 63(3): 038101. doi: 10.7498/aps.63.038101
    [10] 白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东. 抽拉速度对SCN-DC共晶生长形貌的影响. 物理学报, 2013, 62(21): 218103. doi: 10.7498/aps.62.218103
    [11] 王贤斌, 林鑫, 王理林, 宇红雷, 王猛, 黄卫东. 液相对流对定向凝固胞/枝晶间距的影响. 物理学报, 2013, 62(7): 078102. doi: 10.7498/aps.62.078102
    [12] 王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东. 晶体取向对定向凝固枝晶生长的影响. 物理学报, 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [13] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究. 物理学报, 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [14] 王理林, 王贤斌, 王红艳, 林鑫, 黄卫东. 晶体取向对定向凝固平界面失稳行为的影响. 物理学报, 2012, 61(14): 148104. doi: 10.7498/aps.61.148104
    [15] 石玉峰, 许庆彦, 柳百成. 对流作用下枝晶形貌演化的数值模拟和实验研究. 物理学报, 2011, 60(12): 126101. doi: 10.7498/aps.60.126101
    [16] 贾明, 田忠良, 赖延清, 李劼, 伊继光, 闫剑锋, 刘业翔. 电解精炼制备太阳级硅杂质行为研究. 物理学报, 2010, 59(3): 1938-1945. doi: 10.7498/aps.59.1938
    [17] 王建元, 陈长乐, 翟薇, 金克新. 切向流动作用下SCN-3wt% H2O枝晶定向生长过程研究. 物理学报, 2009, 58(9): 6554-6559. doi: 10.7498/aps.58.6554
    [18] 王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志. Ti-45at.% Al合金定向凝固过程中显微组织演化的计算机模拟. 物理学报, 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [19] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [20] 李梅娥, 杨根仓, 周尧和. 二元合金高速定向凝固过程的相场法数值模拟. 物理学报, 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
计量
  • 文章访问数:  7636
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-16
  • 修回日期:  2018-07-24
  • 刊出日期:  2018-10-05

/

返回文章
返回