-
The growth of ice crystal has been widely investigated by researchers from various fields, but efficient method that can meet the experimental requirements for identifying and reproducing the ice crystal with specific orientation is still lacking. In this paper, an ice crystal can be characterized with unique orientation information, where tilt angle of optical axis α, extinction angle β and the angle γ relative to preferred orientation 〈1120〉 in the basal plane (0001) and the direction of temperature gradient G are determined based on the properties of optic polarization of hexagonal ice in the directional solidification. An integrated criterion for determining the orientation of hexagonal ice is proposed by combining the crystal optics and solidification interface morphology. Precise manipulation of the orientation of single ice crystal is achieved by using a step-by-step method via a unidirectional platform combined with a polarized optical microscope. Three coordinate systems are established to achieve the manipulation of ice. They are the microscope coordinate system termed as “A-P-L”, where A, P and L refer to the directions of analyzer, polarizer and incident beam of the optical microscope, respectively, the specimen box coordinate system named “xyz”, and the crystallographic coordinate system described by the optical axis and 〈1120〉 in the basal plane (0001). Ice crystals are all confined in a series of glass specimen boxes filled with KCl solution (0.2 mol/L) and the growth sequence of the single ice crystal from one specimen box to another is specially designed to ensure the specific orientation relations among specimen boxes, and the orientation relations among the specimen boxes are adjusted according to the integrated criterion. Single ice crystals with three typical orientations (α3=90°, β3 a=0°; α3=90°, β3b=90°; α4=90°, β4 dose not exist, γ ≈ 33°) relative to the microscope coordinate A-P-L are obtained, and their morphological characteristics of S/L interface are observed in situ under different pulling velocities (10.3 μm/s, 13.4 μm/s and 100 μm/s, respectively). In this paper we successfully solve the problem of orientation determination and manipulation of ice orientation in the study of directional solidification of ice crystal, which may provide an effective experimental approach for investigating the theoretical problems concerning ice crystal growth.
-
Keywords:
- hexagonal ice /
- manipulation of crystal orientation /
- unidirectional solidification /
- crystal optics
[1] Ma J, Hung H, Tian C, Kallenborn R 2011 Nat. Clim. Change 1 255
[2] Fu Q, Hou R, Li T, Jiang R, Yan P, Ma Z, Zhou Z 2018 Sci. Rep. 8 1325
[3] Furukawa Y, Nagashima K, Nakatsubo SI, Yoshizaki I, Tamaru H, Shimaoka T, Sone T, Yokoyama E, Zepeda S, Terasawa T, Asakawa H, Murata K I, Sazaki G 2017 Sci. Rep. 7 43157
[4] Petrenko V, Whitworth R 2002 Physics of Ice (New York:Oxford University Press) pp3-4, 24-30
[5] Morris C E, Sands D C, Vinatzer B A, Glaux C, Guilbaud C, Buffière A, Yan S, Dominguez H, Thompson B M 2008 ISME J. 2 321
[6] Deville S, Nalla R K 2006 Science 312 1312
[7] Anesio A M, Lutz S, Chrismas N A M, Benning L G 2017 Npj Biofilms Microbiomes 3 10
[8] Xu X Z, Wang J C, Zhang L X 2001 Physics of Frozen Soil (Beijing:Science Press) pp1-4 (in Chinese) [徐学祖, 王家澄, 张立新 2001 冻土物理学 (北京:科学出版社) 第1–4页]
[9] Dachs J 2011 Nat. Clim. Change 1 247
[10] Libbrecht K G 2001 Eng. Sci. 64 10
[11] Furukawa Y, Shimada W 1993 J. Cryst. Growth 128 234
[12] Macklin W C, Ryan B F 1965 J. Atmos. Sci. 22 452
[13] Singer H M 2006 Phys. Rev. E 73 051606
[14] Shibkov A A, Golovin Y I, Zheltov M A, Korolev A A, Leonov A A 2003 Physica A 319 65
[15] Thomas D N, Dieckmann G S 2003 Sea Ice:An Introduction to its Physics, Chemistry, Biology and Geology (Blackwell:John Wiley & Sons) p24
[16] Saruya T, Kurita K, Rempel A W 2013 Phys. Rev. E 87 9
[17] Deville S 2017 Scr. Mater. 147 119
[18] Rudolph P 2014 Handbook of Crystal Growth:Bulk Crystal Growth (USA:Elsevier) pp46-47, 414-415
[19] Harrison J D, Tiller W A 1963 J. Appl. Phys. 34 3349
[20] Bai H, Chen Y, Delattre B, Tomsia A P, Ritchie R O 2015 Sci. Adv. 1 e1500849
[21] Deville S, Adrien J, Maire E, Scheel M, Di Michiel M 2013 Acta Mater. 61 2077
[22] Lasalle A, Guizard C, Maire E, Adrien J, Deville S 2012 Acta Mater. 60 4594
[23] Deville S, Maire E, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C 2009 J. Am. Ceram. Soc. 92 2497
[24] Zhao L S, Pan L Q, Ji A L, Cao Z X, Wang Q 2016 Chin. Phys. B 25 075101
[25] Jia L, Wang L L, Shen J N, Zhang Z M, Li J J, Wang J C, Wang Z J 2017 Acta Phys. Sin. 66 196402 (in Chinese) [贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军 2017 物理学报 66 196402]
[26] Wang X 2014 Crystal Optics (Nanjing:Nanjing University Press) pp9-13, 43-51 (in Chinese) [汪相 2014 晶体光学·彩色第2版(南京:南京大学出版社) 第 9-13 页, 第43-51 页]
[27] Nagashima K, Furukawa Y 1997 J. Cryst. Growth 171 577
[28] Wang Z J, Li J J, Wang J C 2011 J. Cryst. Growth 328 108
[29] Gosting L J 1950 J. Am. Chem. Soc. 72 4418
-
[1] Ma J, Hung H, Tian C, Kallenborn R 2011 Nat. Clim. Change 1 255
[2] Fu Q, Hou R, Li T, Jiang R, Yan P, Ma Z, Zhou Z 2018 Sci. Rep. 8 1325
[3] Furukawa Y, Nagashima K, Nakatsubo SI, Yoshizaki I, Tamaru H, Shimaoka T, Sone T, Yokoyama E, Zepeda S, Terasawa T, Asakawa H, Murata K I, Sazaki G 2017 Sci. Rep. 7 43157
[4] Petrenko V, Whitworth R 2002 Physics of Ice (New York:Oxford University Press) pp3-4, 24-30
[5] Morris C E, Sands D C, Vinatzer B A, Glaux C, Guilbaud C, Buffière A, Yan S, Dominguez H, Thompson B M 2008 ISME J. 2 321
[6] Deville S, Nalla R K 2006 Science 312 1312
[7] Anesio A M, Lutz S, Chrismas N A M, Benning L G 2017 Npj Biofilms Microbiomes 3 10
[8] Xu X Z, Wang J C, Zhang L X 2001 Physics of Frozen Soil (Beijing:Science Press) pp1-4 (in Chinese) [徐学祖, 王家澄, 张立新 2001 冻土物理学 (北京:科学出版社) 第1–4页]
[9] Dachs J 2011 Nat. Clim. Change 1 247
[10] Libbrecht K G 2001 Eng. Sci. 64 10
[11] Furukawa Y, Shimada W 1993 J. Cryst. Growth 128 234
[12] Macklin W C, Ryan B F 1965 J. Atmos. Sci. 22 452
[13] Singer H M 2006 Phys. Rev. E 73 051606
[14] Shibkov A A, Golovin Y I, Zheltov M A, Korolev A A, Leonov A A 2003 Physica A 319 65
[15] Thomas D N, Dieckmann G S 2003 Sea Ice:An Introduction to its Physics, Chemistry, Biology and Geology (Blackwell:John Wiley & Sons) p24
[16] Saruya T, Kurita K, Rempel A W 2013 Phys. Rev. E 87 9
[17] Deville S 2017 Scr. Mater. 147 119
[18] Rudolph P 2014 Handbook of Crystal Growth:Bulk Crystal Growth (USA:Elsevier) pp46-47, 414-415
[19] Harrison J D, Tiller W A 1963 J. Appl. Phys. 34 3349
[20] Bai H, Chen Y, Delattre B, Tomsia A P, Ritchie R O 2015 Sci. Adv. 1 e1500849
[21] Deville S, Adrien J, Maire E, Scheel M, Di Michiel M 2013 Acta Mater. 61 2077
[22] Lasalle A, Guizard C, Maire E, Adrien J, Deville S 2012 Acta Mater. 60 4594
[23] Deville S, Maire E, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C 2009 J. Am. Ceram. Soc. 92 2497
[24] Zhao L S, Pan L Q, Ji A L, Cao Z X, Wang Q 2016 Chin. Phys. B 25 075101
[25] Jia L, Wang L L, Shen J N, Zhang Z M, Li J J, Wang J C, Wang Z J 2017 Acta Phys. Sin. 66 196402 (in Chinese) [贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军 2017 物理学报 66 196402]
[26] Wang X 2014 Crystal Optics (Nanjing:Nanjing University Press) pp9-13, 43-51 (in Chinese) [汪相 2014 晶体光学·彩色第2版(南京:南京大学出版社) 第 9-13 页, 第43-51 页]
[27] Nagashima K, Furukawa Y 1997 J. Cryst. Growth 171 577
[28] Wang Z J, Li J J, Wang J C 2011 J. Cryst. Growth 328 108
[29] Gosting L J 1950 J. Am. Chem. Soc. 72 4418
计量
- 文章访问数: 7837
- PDF下载量: 154
- 被引次数: 0